SSAT Upper Level Math : Rational Numbers

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : How To Find A Solution To A Compound Fraction

Convert  to an improper fraction. 

Possible Answers:

Correct answer:

Explanation:

To convert into an improper fraction, take the whole number  and multiply that with the denominator .

 

Then, we add that to the numerator which is .

Then we take that sum and put it over th denominator  which gives us an answer of:

 

Example Question #4 : How To Find A Solution To A Compound Fraction

Simplify.

Possible Answers:

Correct answer:

Explanation:

Lets focus on the left fraction. Lets try to have three fractions multipled altogether. To acheive this, we can multiply the numerator of the left fraction with the reciprocal of the denominator.

Thus, mutliple the numerator and denominator by .  

Now we have . We can simplify this by crossing out the  to a  and the  to a .

Then, cross out the  into a  and the  into a . It should look like this:

.

Multiply it out and you will get the answer.

Example Question #5 : How To Find A Solution To A Compound Fraction

Solve and simplify.

Possible Answers:

Correct answer:

Explanation:

Convert both numerator and denominators into fractions. Convert the integers first to fractions. 

Now that our numerator and denominator have a common denominator between their fractions we can subtract them.

Then multiply top and bottom by  as that is the reciprocal of the denominator and when dividing fractions, it is the same as multiplying the numerator by the reciprocal of the denominator.

 

Then reduce by crossing out the  into a  and the  into a .

Then multiply to get the answer.

 

 

Example Question #1 : Compound Fractions

Solve and simplify.

Possible Answers:

Correct answer:

Explanation:

Remember PEMDAS, the order of operations for dealing with expressions which is the acronym that stands for (Parentheses, Exponents, Multiplication, Division, Addition, Subtraction).

Multiplication has priority over addition. Looking at the fractions that are multiplied together we can see the  is reduced to  and the  into a .

The new fraction becomes: 

 

Then find least common denominator. In our case it will be 70.

 .

Then add it all up to get the final answer.

 

Example Question #3 : Compound Fractions

Simplify.

Possible Answers:

Correct answer:

Explanation:

Remember PEMDAS. Take care of the parentheses first and find least common denominator of the fractions. Next distribute, then add and finally, subtract. 

Working with the parentheses we get:

 

Reduce the  to  and the  to . Then reduce  to  and  to .

 

Multiply first then subtract.

 

If I divide the left fraction by , I should be able to match the denominator of the right fraction and also I can subtract easily.

Example Question #3 : Decimals

Express   as a decimal.

Possible Answers:

Correct answer:

Explanation:

Divide 8 by 15:

  

The 3 repeats, so the correct choice is .

Example Question #4 : Decimals

Give the decimal equivalent of .

Possible Answers:

Correct answer:

Explanation:

Divide 11 by 18:

The 1 repeats infinitely, so this can be rewritten as .

Example Question #5 : Decimals

Give the decimal equivalent of .

Possible Answers:

Correct answer:

Explanation:

Divide 5 by 27:

The group "185" repeats infinitely, so this can be written as .

Example Question #6 : Decimals

Give the decimal equivalent of .

Possible Answers:

Correct answer:

Explanation:

Divide 7 by 36: 

The 4 repeats infinitely, so this can be rewritten as .

Example Question #1 : Decimals With Fractions

Write the value of this expression as a decimal:

Possible Answers:

Correct answer:

Explanation:

Simplify the sum by taking the least common denominator, which is 12:

Divide 13 by 12:

Learning Tools by Varsity Tutors