All SAT Math Resources
Example Questions
Example Question #4 : How To Find The Missing Number In A Set
Which set represents all the single-digits integers (0-9) that are either prime, a perfect square, or found in the number 68?
The prime digits are 2, 3, 5, and 7.
The perfect square digits are 0, 1, 4, and 9.
The only digits not represent in these two groups are 6 and 8, which are, coincidentally, found in the number 68.
Example Question #1 : How To Find The Missing Number In A Set
If four different integers are selected, one from each of the following sets, what is the greater sum that these four integers could have?
W = {4, 6, 9, 10}
X = {4, 5, 8, 10}
Y = {3, 6, 7, 11}
Z = {5, 8, 10, 11}
38
40
42
41
39
38
By observing each of these sets, we can easily determine the largest number in each; however, the problem is asking for us to find the greatest possible sum if we select four different integers, one from each set. The largest number is 11. We will either select this number from set Y or set Z.
We will select set
Y for the 11
because the next larger number in set
Z is 10, which is greater than the next largest number is set Y, 7.
We can use set Z for 10.
Because the 10 has already been selected, choosing the integer from W and X should be easy because 9 is the next largest integer from set W
and
8 is the next largest integer from set X.
11 + 10 + 9 + 8 = 38
Example Question #1 : Counting / Sets
A team has a win-loss ratio of . If the team wins six games in a row, the win-loss ratio will now be . How many losses did the team have initially?
If a team's ratio of wins to losses increases from to by winning six games, they must have 12 wins initially and 3 losses.
Example Question #2 : How To Find The Missing Number In A Set
Find the missing number in the following set:
The rule is as follows: add 2 to the previous number then multiply times 2.
The answer is (16 + 2) * 2 = 36.
Example Question #6 : Sets
You have the following data set:
.
Find the missing number in the data set.
In order to find the missing number (X), you must first identify the pattern in the set of numbers. Upon a glance, you can determine that the pattern starts with 4 and then the next number is 2n+1, with n being the preceding number in the set.
For example, let's start with 4. Multiplying 2*4+1 gives us 9, the next number in the set.
Therefore, the missing number in the set is .
Example Question #2 : How To Find The Missing Number In A Set
A sequence of boxes is constructed, the first six of which are seen above. What number is in the lower right corner of the ninth box?
The lower right number of each box is the sum of the other three numbers, which are found as follows:
The upper left numbers are simply the natural numbers in order;
The upper right numbers are the powers of 2, beginning with ;
The lower left numbers are the terms of the Fibonacci sequence, which is formed by setting the first two terms equal to 1 and each subsequent term equal to its predecessors.
Therefore, the ninth box in the sequence includes the number 9 as its upper left entry, and as its upper right entry. The lower left entry is the ninth Fibonacci number, which can be found as follows:
The lower right entry is the sum of the other entries:
Example Question #1 : How To Find The Number Of Integers Between Two Other Integers
A custom-made ruler is long and for every there's a tick mark. How many tick marks are there on the ruler?
There will be 15 gaps of long but 16 tick marks because there will be a tick mark on each end of the ruler.
Example Question #1 : How To Find The Number Of Integers Between Two Other Integers
Four consecutive odd integers sum to 40. How many of these numbers are prime?
Let x equal the smallest of the four numbers. Therefore:
Therefore the four odd numbers are 7, 9, 11, and 13. Since all are prime except 9, three of the numbers are prime.
Example Question #2 : How To Find The Number Of Integers Between Two Other Integers
The positive integer is not divisible by . The remainder when is divided by and the remainder when is divided by are both equal to . What is ?
We know that the remainder, , must be less than by the definition of remainder. Therefore our only choices are , , or . We can test each of these cases.
If would be divisible by , which we said is not true.
If : Try . Then . When we divide by , we have a remainder of . This works!
If : Try . Then . When we divide this by , we have a remainder of . Thus, our remainders are not equal.
Thus, .
Example Question #4 : How To Find The Number Of Integers Between Two Other Integers
How many integers lie between and , including the end points?
Let's look at a small example, the numbers between 1 and 3 including all endpoints. We have 1, 2, and 3. If we subtract our numbers, we get 2. We need to add one more to get all the desired numbers. We can follow the same process with our larger numbers.
Take,
.
Then, adding 1,
.
Therefore, our answer is