SAT Math : How to add exponents

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #91 : Exponents

Evaluate \displaystyle 3^7+3^7+3^7

Possible Answers:

\displaystyle 3^{21}

\displaystyle 3^{14}

\displaystyle 3^{27}

\displaystyle 3^{10}

\displaystyle 3^8

Correct answer:

\displaystyle 3^8

Explanation:

When adding exponents, we don't multiply the exponents but we try to factor to see if we simplify the addition problem. In this case, we can simplify it by factoring \displaystyle 3^7. We get \displaystyle 3^7(1+1+1)=3^7(3)=3^8.

Example Question #92 : Exponents

Evaluate \displaystyle 5^7+5^7+5^7+5^7+5^7

Possible Answers:

\displaystyle 5^{60}

\displaystyle 5^{35}

\displaystyle 5^9

\displaystyle 5^8

\displaystyle 5^{40}

Correct answer:

\displaystyle 5^8

Explanation:

When adding exponents, we don't multiply the exponents but we try to factor to see if we simplify the addition problem. In this case, we can simplify it by factoring \displaystyle 5^7. We get \displaystyle 5^7(1+1+1+1+1)=5^7(5)=5^8.

Example Question #23 : How To Add Exponents

Evaluate \displaystyle 2^{12}+4^6

Possible Answers:

\displaystyle 2^{15}(3)

\displaystyle 4^7(3)

\displaystyle 2^{12}(5)

\displaystyle 4^{12}

\displaystyle 2^{13}

Correct answer:

\displaystyle 2^{13}

Explanation:

Although we have different bases, we do know \displaystyle 4=2^2. Therefore our expression is \displaystyle 2^{12}+(2^2)^6=2^{12}+2^{12}. Remember to apply the power rule of exponents. Then, now we can factor \displaystyle 2^{12}\displaystyle 2^{12}+2^{12}=2^{12}(1+1)=2^{12}(2)=2^{13}

Example Question #14 : Exponential Operations

If \dpi{100} \small r\displaystyle \dpi{100} \small r and \dpi{100} \small s\displaystyle \dpi{100} \small s are positive integers, and \dpi{100} \small 25\left ( 5^{r} \right )=5^{s-2}\displaystyle \dpi{100} \small 25\left ( 5^{r} \right )=5^{s-2}, then what is \dpi{100} \small s\displaystyle \dpi{100} \small s in terms of \dpi{100} \small r\displaystyle \dpi{100} \small r?

Possible Answers:

\dpi{100} \small r+4\displaystyle \dpi{100} \small r+4

\dpi{100} \small r+1\displaystyle \dpi{100} \small r+1

\dpi{100} \small r+3\displaystyle \dpi{100} \small r+3

\dpi{100} \small r\displaystyle \dpi{100} \small r

\dpi{100} \small r+2\displaystyle \dpi{100} \small r+2

Correct answer:

\dpi{100} \small r+4\displaystyle \dpi{100} \small r+4

Explanation:

\dpi{100} \small 25\left ( 5^{r} \right )\displaystyle \dpi{100} \small 25\left ( 5^{r} \right ) is equal to \displaystyle 5^{2}\left ( 5^{r}\right ) which is equal to \dpi{100} \small \left ( 5^{r+2} \right )\displaystyle \dpi{100} \small \left ( 5^{r+2} \right ). If we compare this to the original equation we get \dpi{100} \small r+2=s-2\rightarrow s=r+4\displaystyle \dpi{100} \small r+2=s-2\rightarrow s=r+4

Example Question #24 : How To Add Exponents

Evaluate:

\displaystyle 2^8+2^8

Possible Answers:

\displaystyle 2^{16}

\displaystyle 2^9

\displaystyle 2^7

\displaystyle 2^{15}

\displaystyle 4^8

Correct answer:

\displaystyle 2^9

Explanation:

When adding exponents, you want to factor out to make solving the question easier.

\displaystyle 2^8+2^8 we can factor out \displaystyle 2^8 to get 

\displaystyle 2^8(1+1)=2^8(2).

We have the same base so we just apply the exponent rule for multiplication to get 

\displaystyle 2^8(2)=2^{8+1}=2^9.

Example Question #21 : How To Add Exponents

Which of the following is equivalent to \displaystyle 16^6+4^{12}+64^{4}+256^3?

Possible Answers:

\displaystyle 64^3

\displaystyle 16^8

\displaystyle 4^{14}

\displaystyle 256^4

\displaystyle 4^{13}

Correct answer:

\displaystyle 4^{13}

Explanation:

Although each base is different, we can convert them to a common base of \displaystyle 4. 

We know 

\displaystyle 16^6=(4^2)^6=4^{12}

\displaystyle 64^4=(4^3)^4=4^{12},

and 

\displaystyle 256^3=(4^4)^3=4^{12}.

Remember to apply the power rule of exponents.

Therefore we have 

\displaystyle 4^{12}+4^{12}+4^{12}+4^{12}.

We can factor out \displaystyle 4^{12} to get 

\displaystyle 4^{12}(1+1+1+1)=4^{12}(4)=4^{13}.

Example Question #26 : How To Add Exponents

Simplify: \displaystyle 3^{2x}+3^{2x}+3^{2x}

 

Possible Answers:

\displaystyle 3^{2x+1}

\displaystyle 3^{3x}

\displaystyle 3^{2x}

\displaystyle 3^{6x}

\displaystyle 3^{3x+1}

Correct answer:

\displaystyle 3^{2x+1}

Explanation:

When adding exponents, you want to factor out to make solving the question easier.

\displaystyle 3^{2x}+3^{2x}+3^{2x} 

We can factor out \displaystyle 3^{2x} to get 

\displaystyle 3^{2x}(1+1+1)=3^{2x}*3.

Now we can add exponents and therefore our answer is 

\displaystyle 3^{2x+1}.

Example Question #93 : Exponents

Given  \displaystyle 9 \cdot 3^n = 3^9, what is the value of \displaystyle n?

Possible Answers:

5

11

7

3

9

Correct answer:

7

Explanation:

Express \displaystyle 9 as a power of \displaystyle 3; that is: \displaystyle 9=3^2.

Then \displaystyle 3^2 \cdot 3^n = 3^9.

Using the properties of exponents, \displaystyle 3^{n+2}=3^9.

Therefore, \displaystyle n+2=9, so \displaystyle n=7.

Example Question #1 : How To Add Exponents

If \displaystyle 9^{(x + 5)}+3^{2(x+5)}=162, what is the value of \displaystyle x?

Possible Answers:

\displaystyle 1

\displaystyle -3

\displaystyle 0

\displaystyle -1

Correct answer:

\displaystyle -3

Explanation:

Since we have two \displaystyle x’s in \displaystyle 9^{(x + 5)} + 3^{2(x + 5)} we will need to combine the two terms.

For \displaystyle 3^{2(x + 5) } this can be rewritten as

\displaystyle (3^2)^{ (x + 5)} = 9^ {(x + 5)}

So we have \displaystyle 9^{ (x + 5) }+ 9^{ (x + 5)} = 162.

Or \displaystyle 2 (9^{ (x + 5)}) = 162

Divide this by \displaystyle 2\displaystyle 9^{ (x + 5)} = 81 = 9^ 2

Thus \displaystyle x +5 = 2 or \displaystyle x = -3

*Hint: If you are really unsure, you could have plugged in the numbers and found that the first choice worked in the equation.

Learning Tools by Varsity Tutors