SAT II Math I : Other Mathematical Relationships

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Direct Proportionality

If  and , find  and .

Possible Answers:

Correct answer:

Explanation:

We cannot solve the first equation until we know at least one of the variables, so let's solve the second equation first to solve for . We therefore get:

With our , we can now find x using the first equation:

We therefore get the correct answer of  and .

Example Question #3 : Direct Proportionality

If an object is hung on a spring, the elongation of the spring varies directly with the mass of the object. A 33 kilogram object increases the length of a spring by exactly 6.6 centimeters. To the nearest tenth of a kilogram, how much mass must an object posess to increase the length of that same spring by exactly 10 centimeters?

Possible Answers:

Correct answer:

Explanation:

Let  be the mass of the weight and the elongation of the spring, respectively. Then for some constant of variation 

.

We can find  by setting :

Therefore .

Set  and solve for :

 kilograms

Example Question #2 : How To Find Direct Variation

If  is directly proportional to  and when  at , what is the value of the constant of proportionality?

 

Possible Answers:

Correct answer:

Explanation:

The general formula for direct proportionality is

where  is the proportionality constant. To find the value of this , we plug in  and

Solve for  by dividing both sides by 12

So .

Example Question #4 : Direct Proportionality

The amount of money you earn is directly proportional to the nunber of hours you worked. On the first day, you earned $32 by working 4 hours.  On the second day, how many hours do you need to work to earn $48.

Possible Answers:

Correct answer:

Explanation:

The general formula for direct proportionality is 

where  is how much money you earned,  is the proportionality constant, and  is the number of hours worked.

Before we can figure out how many hours you need to work to earn $48, we need to find the value of . It is given that you earned $32 by working 4 hours. Plug these values into the formula

Solve for  by dividing both sides by 4.

So . We can use this to find out the hours you need to work to earn $48. With , we have

Plug in $48.

Divide both sides by 8

So you will need to work 6 hours to earn $48.

Example Question #11 : Direct Proportionality

The quantity x varies directly with y. If x is 26 when y is 100, find x when y is 200.

Possible Answers:

13

52

104

26

6.5

Correct answer:

52

Explanation:

We must set up a proportion. Since x varies directly with y, when y is multiplied by 2, x is also multiplied by 2. 26 times 2 is 52.

Direct variation:

Example Question #11 : Proportionalities

The number of pizzas is directly proportional to the number of people attending the party. If  pizzas are needed for  people, how many pizzas are needed for  people?

Possible Answers:

Correct answer:

Explanation:

Let  be the number of pizzas and  be the number of people attending. Because  is directly proportional to , we have

and from the problem

.

Therefore, solving for  we get:

Now solving for ,

Thus, for 18 people 9 pizzas are needed.

Example Question #12 : Other Mathematical Relationships

Resistance in a wire to the flow of electricity is calculated by  where  is the length of the wire,  is the cross sectional area, and  is the predefined resistivity of the material the wire is made of. Which variable (s) is/are directly proportional to the resistance of the wire?

Possible Answers:

Correct answer:

Explanation:

Direct proportionality results when two quantities increase or decrease at the same time. In the formula for resistance, , as  increases so too does . The same is true for .  It helps to think of these variables in terms of numbers. When the numerator of this formula is increased and the denominator remains the same, the overall quotient would be larger. The opposite is true if the numerator is decreased and the denominator remains the same (quotient would be smaller).

Example Question #12 : Direct Proportionality

Write the following equation:

k and x are directly proportionate to y.

Possible Answers:

Correct answer:

Explanation:

Direct proportionality means that as one increases so does the other. The equation that is indicative of this statement is the following:

Example Question #13 : Basic Single Variable Algebra

The amount of money earned in a week while working in a snow shoveling business is directly proportional to the number of driveways that the workers shovel. If the business earned $3000 in a week while shoveling 600 driveways how much did they earn for shoveling each driveway?

Possible Answers:

Correct answer:

Explanation:

Direct proportionality means you should use the equation 

The question says that the amount of money earned by the business is directly proportional to the number of driveways shoveled so that means y must be the amount of money earned ($3000) and x must be the amount of driveways shoveled (600). Plugging these values into the equation you should get

Solve for k by doing the opposite of what is being done to k on both sides of the equation. Since k is being multiplied by 600 divide both sides by 600

Each driveway earned the snow shoveling business $5

Example Question #14 : Basic Single Variable Algebra

The force from gravity () is directly proportional to the inverse of the square of the distance () you are from an object.  Which formula shows that?

Possible Answers:

Correct answer:

Explanation:

Breaking down the question one small piece at a time:

"The force from gravity () is directly proportional" means that the gravity term is going to be on one side of the proportional symbol, and everything else is going to be on the other side.

"to the inverse...of the distance" means that the distance will be in the denominator.  As distance gets larger, force will get smaller.

"of the square of the distance" means that the distance will be squared.

Putting it all together gives:

Learning Tools by Varsity Tutors