Pre-Algebra : Multiplication and Division

Study concepts, example questions & explanations for Pre-Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Multiplication And Division

Simplify:  

\displaystyle \left(-\frac{3}{8}\right)\left(\frac{2}{7}\right)

Possible Answers:

\displaystyle -\frac{1}{3}

\displaystyle -\frac{3}{112}

\displaystyle -\frac{5}{56}

\displaystyle \frac{3}{28}

\displaystyle -\frac{3}{28}

Correct answer:

\displaystyle -\frac{3}{28}

Explanation:

Simplify the numerator and denominator by cancelling out common factors.  

\displaystyle \left(-\frac{3}{8}\right)\left(\frac{2}{7}\right)

Then follow suit and multiply the denominator with denominator and numerator with numerator.

\displaystyle =\left(-\frac{3}{4}\right)\left(\frac{1}{7}\right) = -\frac{3}{28}

Example Question #192 : Operations And Properties

Multiply:  \displaystyle 39 \times 7

Possible Answers:

\displaystyle 213

\displaystyle 313

\displaystyle 263

\displaystyle 273

\displaystyle 363

Correct answer:

\displaystyle 273

Explanation:

Multiply the ones digits together.

\displaystyle 9\times 7 =63

The ones digit of the final answer is \displaystyle 3.

Carry over the \displaystyle 6 to the next calculuation.

Multiply the \displaystyle 7 with the tens digit of the first number, and add the carryover \displaystyle 6.

\displaystyle 7\times 3 +6 = 21+6 = 27

The answer is:  \displaystyle 273

Example Question #191 : Operations

Multiply:  

\displaystyle (-4)(9)\left | -9\right |

Possible Answers:

\displaystyle 22

\displaystyle -324

\displaystyle 45

\displaystyle 324

\displaystyle 77

Correct answer:

\displaystyle -324

Explanation:

Eliminate the absolute value sign before proceeding to multiply all the terms.  

A value inside the absolute value will result into a positive value.

\displaystyle (-4)(9)\left | -9\right | = (-4)(9)(9)

From here, first multiply \displaystyle -4\cdot 9, when doing so remember when a negative number is multiplied by a positive number the resulting product is negative.

Therefore we get,

\displaystyle -4\cdot 9=-36.

Now we will need to multiply \displaystyle -36 with \displaystyle 9.

First multiply six with nine to get \displaystyle 54. Keep the four in the ones place and carry the five to the tens place. Now multply nine with three \displaystyle 9\cdot 3=27. Since we carried the five over we need to add \displaystyle 5+27=32. Combine this value with the value that was found for the ones spot to get, \displaystyle 324. Finally, place a negative sign in front of it to arrive at the final answer.

\displaystyle -324.

Example Question #191 : Operations And Properties

Multiply:  \displaystyle 13\times 8

Possible Answers:

\displaystyle 104

\displaystyle 164

\displaystyle 224

\displaystyle 154

\displaystyle 114

Correct answer:

\displaystyle 104

Explanation:

Multiply the ones digits.

\displaystyle 3\times 8 = 24

The \displaystyle 4 is the ones digit of the final answer. The \displaystyle 2 will be the carryover for the next calculation.

Multiply the tens digit of \displaystyle 13 with \displaystyle 8 with the carryover.

\displaystyle 1\times 8+2 = 10

There are no further calculuations. Combine the numbers.

The answer is:  \displaystyle 104

Example Question #191 : Operations And Properties

Multiply:  \displaystyle 321 \times 9

Possible Answers:

\displaystyle 2889

\displaystyle 2989

\displaystyle 3139

\displaystyle 2139

\displaystyle 2789

Correct answer:

\displaystyle 2889

Explanation:

Multiply the ones digit of \displaystyle 321 with \displaystyle 9.

\displaystyle 1\times 9=9

Multiply the tens digit of \displaystyle 321 with \displaystyle 9.

\displaystyle 2\times 9 =18

Since this number is 10 or greater, use this tens digit as the carry over for the next calculation.

Multiply the hundreds digit of \displaystyle 321 with \displaystyle 9 with the carry over.

\displaystyle 3\times 9+1 = 28

Combine this number with the ones digit of the previous calculations.

The correct answer is:  \displaystyle 2889

Example Question #11 : Multiplication And Division

\displaystyle 7*6

Possible Answers:

\displaystyle 48

\displaystyle 42

\displaystyle 32

\displaystyle 76

\displaystyle 13

Correct answer:

\displaystyle 42

Explanation:

The numbers are positive. We just multiply. Answer is \displaystyle 42

Example Question #12 : Multiplication And Division

\displaystyle -7*0

Possible Answers:

\displaystyle 7

\displaystyle -7

\displaystyle 0

\displaystyle -1

\displaystyle 1

Correct answer:

\displaystyle 0

Explanation:

There is a negative number and zero. Regardless whether the number is positive or negative, anything multiplied by zero is always zero. Answer is \displaystyle 0.

Example Question #13 : Multiplication And Division

\displaystyle -9*4

Possible Answers:

\displaystyle -36

\displaystyle -26

\displaystyle 36

\displaystyle 12

\displaystyle -13

Correct answer:

\displaystyle -36

Explanation:

We have one positive and one negative number.

When multipled, our answer is negative.

The product is \displaystyle -36.

Example Question #197 : Operations And Properties

\displaystyle -15*-11

Possible Answers:

\displaystyle -145

\displaystyle -26

\displaystyle -165

\displaystyle 165

\displaystyle 26

Correct answer:

\displaystyle 165

Explanation:

We have two negative numbers. When multiplied, the answer is positive.

\displaystyle -15\\ \underline{\times -11}

          \displaystyle 15

    \displaystyle \underline{+150}

        \displaystyle 165

The product is \displaystyle 165.

Example Question #201 : Operations

\displaystyle -4*-7*9

Possible Answers:

\displaystyle 252

\displaystyle -48

\displaystyle -252

\displaystyle 256

\displaystyle -168

Correct answer:

\displaystyle 252

Explanation:

We have two negative numbers and one positive number. We multiply from left to right. Two negative numbers multiplied make a positive number. Two positive numbers multiplied is also positive.

\displaystyle -4\cdot -7=28

Now the expression becomes,

\displaystyle 28\cdot 9

Answer is \displaystyle 252.

Learning Tools by Varsity Tutors