Pre-Algebra : Absolute Value

Study concepts, example questions & explanations for Pre-Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Absolute Value

Solve:

\displaystyle \left | -6+4\right |\times7=

Possible Answers:

\displaystyle 14

\displaystyle -70

\displaystyle 70

\displaystyle -14

Correct answer:

\displaystyle 14

Explanation:

\displaystyle \left | -6+4\right |\times7=\left | -2\right |\times7=2\times7=14

Example Question #2 : Absolute Value

Solve:

\displaystyle \left | 7-3\right |=

Possible Answers:

\displaystyle 4

\displaystyle 10

\displaystyle 7

\displaystyle -10

\displaystyle -4

Correct answer:

\displaystyle 4

Explanation:

Step 1: solve the problem 

\displaystyle \left | 7-3\right |=\left | 4\right |

Step 2: solve for absolute value

\displaystyle \left | 4\right |=4

 

Remember, absolute value refers to the total number of units, so it will always be positive. For instance, if I am $4 in debt, I have -$4, but the absolute value of my debt is $4, because that is the total number of dollars that I'm in debt. 

Example Question #3 : Absolute Value

Solve:

\displaystyle \small \small \left | 3-8 \right | =

 

Possible Answers:

\displaystyle \small -5

\displaystyle \small 5

\displaystyle \small 11

\displaystyle \small -11

Correct answer:

\displaystyle \small 5

Explanation:

First, solve the equation:

\displaystyle \small \left | 3-8 \right | = \left | -5 \right |

Next, account for the absolute value:

\displaystyle \small \left | -5 \right | = 5

Therefore, the answer is \displaystyle \small 5.

Example Question #4 : Absolute Value

Solve the expression below:

 \displaystyle \small \small 19+\left |3*(-6) \right | 

Possible Answers:

\displaystyle \small 36

\displaystyle \small -1

\displaystyle \small 1

\displaystyle \small 72

\displaystyle \small 37

Correct answer:

\displaystyle \small 37

Explanation:

\displaystyle \small \small \small 19+\left |3*(-6) \right | simplifies to \displaystyle \small \small \small \small 19+\left |-18 \right |

For absolute value expressions, the value within the bars is treated as positive

So, the expression becomes \displaystyle \small 19+18 which adds to \displaystyle \small 37

Example Question #5 : Absolute Value

Evaluate:

\displaystyle \left | -45 + \left (-83 \right ) \right | - 23

Possible Answers:

None of the other responses is correct.

\displaystyle -61

\displaystyle 105

\displaystyle 151

\displaystyle 15

Correct answer:

\displaystyle 105

Explanation:

\displaystyle \left | -45 + \left (-83 \right ) \right | - 23

\displaystyle = \left | - \left (45+83 \right ) \right | - 23

\displaystyle = \left | - 128 \right | - 23

\displaystyle = 128 - 23

\displaystyle = 105

Example Question #4 : Absolute Value

Solve:

\displaystyle 4+\left | -8-5 \right |=

Possible Answers:

\displaystyle -9

\displaystyle 1

\displaystyle 7

\displaystyle 17

Correct answer:

\displaystyle 17

Explanation:

\displaystyle 4+\left | -8-5 \right |=4+\left | -13 \right |=4+13=17

Example Question #7 : Absolute Value

Evaluate for \displaystyle x = 9:

\displaystyle | \left | x - 18\right | - x|

Possible Answers:

\displaystyle 0

\displaystyle 36

\displaystyle -18

\displaystyle -9

\displaystyle 18

Correct answer:

\displaystyle 0

Explanation:

Substitute 9 for \displaystyle x and evaluate:

\displaystyle | \left | x - 18\right | - x|

\displaystyle = | \left | 9 - 18\right | - 9|

\displaystyle = | \left | - \left (18- 9 \right ) \right | - 9|

\displaystyle = | \left | -9 \right | - 9|

\displaystyle = | 9- 9|

\displaystyle = | 0 |

\displaystyle = 0

Example Question #5 : Absolute Value

Evaluate for \displaystyle x = -6:

\displaystyle | |20 + x | - 6 -x |

Possible Answers:

\displaystyle -2

\displaystyle 14

\displaystyle 38

\displaystyle 2

\displaystyle 26

Correct answer:

\displaystyle 14

Explanation:

Substitute \displaystyle -6 for \displaystyle x and evaluate:

\displaystyle | |20 + x | - 6 -x |

\displaystyle =| |20 + (-6) | - 6 -(-6) |

\displaystyle =| |20 -6 | - 6 -(-6) |

\displaystyle =|14- 6 -(-6) |

\displaystyle =|8 -(-6) |

\displaystyle =|8+6 |

\displaystyle =|14 |

\displaystyle = 14

Example Question #323 : Operations

Solve:

\displaystyle \left | 3-8\right |=

Possible Answers:

\displaystyle 11

\displaystyle -11

\displaystyle -5

\displaystyle 5

Correct answer:

\displaystyle 5

Explanation:

Explanation:

Step 1: Solve the problem

\displaystyle \left | 3-8\right |=\left | -5\right |

Step 2: Solve for the absolute value

\displaystyle \left | -5\right |=5

Remember, absolute value refers to the total number of units, so it will always be positive. For instance, if I am $5 in debt, I have -$5, but the absolute value of my debt is $5, because that is the total number of dollars that I'm in debt.

Example Question #6 : Absolute Value

Solve for \displaystyle x.

\displaystyle \left | x\right |=5

Possible Answers:

\displaystyle \pm5

\displaystyle 0

\displaystyle -5

\displaystyle 5

\displaystyle 2

Correct answer:

\displaystyle \pm5

Explanation:

When taking absolute values, we need to consider both positive and negative values. So, we have two answers. \displaystyle x=5, x=-5

Learning Tools by Varsity Tutors