ISEE Middle Level Quantitative : Quadrilaterals

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 92ft\) and a width of \(\displaystyle 21ft?\)

 

Possible Answers:

\(\displaystyle 50ft\)

\(\displaystyle 30ft\)

\(\displaystyle 45ft\)

\(\displaystyle 25ft\)

\(\displaystyle 40ft\)

Correct answer:

\(\displaystyle 25ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 92=2l+2(21)\)

\(\displaystyle 92=2l+42\)

Subtract \(\displaystyle 42\) from both sides

\(\displaystyle 92-42=2l+42-42\)

\(\displaystyle 50=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{50}{2}=\frac{2l}{2}\)

\(\displaystyle 25=l\)

Example Question #4 : Solving For Length

What is the length of a rectangular room with a perimeter of \(\displaystyle 59ft\) and a width of \(\displaystyle 17ft?\)

Possible Answers:

\(\displaystyle 15ft\)

\(\displaystyle 12ft\)

\(\displaystyle 12.5ft\)

\(\displaystyle 25ft\)

\(\displaystyle 15.5ft\)

Correct answer:

\(\displaystyle 12.5ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 59=2l+2(17)\)

\(\displaystyle 59=2l+34\)

Subtract \(\displaystyle 34\) from both sides

\(\displaystyle 59-34=2l+134-34\)

\(\displaystyle 25=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{25}{2}=\frac{2l}{2}\)

\(\displaystyle 12.5=l\)

Example Question #1 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 66ft\) and a width of \(\displaystyle 18ft?\)

 

Possible Answers:

\(\displaystyle 13ft\)

\(\displaystyle 11ft\)

\(\displaystyle 14ft\)

\(\displaystyle 15ft\)

\(\displaystyle 12ft\)

Correct answer:

\(\displaystyle 15ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 66=2l+2(18)\)

\(\displaystyle 66=2l+36\)

Subtract \(\displaystyle 36\) from both sides

\(\displaystyle 66-36=2l+36-36\)

\(\displaystyle 30=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{30}{2}=\frac{2l}{2}\)

\(\displaystyle 15=l\)

Example Question #6 : Solving For Length

What is the length of a rectangular room with a perimeter of \(\displaystyle 60ft\) and a width of \(\displaystyle 14ft?\)

Possible Answers:

\(\displaystyle 16ft\)

\(\displaystyle 32ft\)

\(\displaystyle 30ft\)

\(\displaystyle 26ft\)

\(\displaystyle 18ft\)

Correct answer:

\(\displaystyle 16ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 60=2l+2(14)\)

\(\displaystyle 60=2l+28\)

Subtract \(\displaystyle 28\) from both sides

\(\displaystyle 60-28=2l+28-28\)

\(\displaystyle 32=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{32}{2}=\frac{2l}{2}\)

\(\displaystyle 16=l\)

Example Question #464 : Plane Geometry

What is the length of a rectangular room with a perimeter of \(\displaystyle 40ft\) and a width of \(\displaystyle 6ft?\)

Possible Answers:

\(\displaystyle 16ft\)

\(\displaystyle 18ft\)

\(\displaystyle 32ft\)

\(\displaystyle 14ft\)

\(\displaystyle 28ft\)

Correct answer:

\(\displaystyle 14ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 40=2l+2(6)\)

\(\displaystyle 40=2l+12\)

Subtract \(\displaystyle 12\) from both sides

\(\displaystyle 40-12=2l+12-12\)

\(\displaystyle 28=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{28}{2}=\frac{2l}{2}\)

\(\displaystyle 14=l\)

Example Question #2 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 96ft\) and a width of \(\displaystyle 30ft?\)

Possible Answers:

\(\displaystyle 18ft\)

\(\displaystyle 20ft\)

\(\displaystyle 22ft\)

\(\displaystyle 24ft\)

\(\displaystyle 19ft\)

Correct answer:

\(\displaystyle 18ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 96=2l+2(30)\)

\(\displaystyle 96=2l+60\)

Subtract \(\displaystyle 60\) from both sides

\(\displaystyle 96-60=2l+60-60\)

\(\displaystyle 36=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{36}{2}=\frac{2l}{2}\)

\(\displaystyle 18=l\)

Example Question #3 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 90ft\) and a width of \(\displaystyle 12ft\)

Possible Answers:

\(\displaystyle 33ft\)

\(\displaystyle 55ft\)

\(\displaystyle 22ft\)

\(\displaystyle 44ft\)

\(\displaystyle 66ft\)

Correct answer:

\(\displaystyle 33ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 90=2l+2(12)\)

\(\displaystyle 90=2l+24\)

Subtract \(\displaystyle 24\) from both sides

\(\displaystyle 90-24=2l+24-24\)

\(\displaystyle 66=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{66}{2}=\frac{2l}{2}\)

\(\displaystyle 33=l\)

Example Question #466 : Plane Geometry

What is the length of a rectangular room with a perimeter of \(\displaystyle 100ft\) and a width of \(\displaystyle 18ft\)

 

Possible Answers:

\(\displaystyle 60ft\)

\(\displaystyle 32ft\)

\(\displaystyle 34ft\)

\(\displaystyle 58ft\)

\(\displaystyle 68ft\)

Correct answer:

\(\displaystyle 32ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 100=2l+2(18)\)

\(\displaystyle 100=2l+36\)

Subtract \(\displaystyle 36\) from both sides

\(\displaystyle 100-36=2l+36-36\)

\(\displaystyle 64=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{64}{2}=\frac{2l}{2}\)

\(\displaystyle 32=l\)

Example Question #21 : Quadrilaterals

What is the length of a rectangular room with a perimeter of \(\displaystyle 50ft\) and a width of \(\displaystyle 7ft?\)

Possible Answers:

\(\displaystyle 14ft\)

\(\displaystyle 18ft\)

\(\displaystyle 36ft\)

\(\displaystyle 20ft\)

\(\displaystyle 28ft\)

Correct answer:

\(\displaystyle 18ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 50=2l+2(7)\)

\(\displaystyle 50=2l+14\)

Subtract \(\displaystyle 14\) from both sides

\(\displaystyle 50-14=2l+14-14\)

\(\displaystyle 36=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{36}{2}=\frac{2l}{2}\)

\(\displaystyle 18=l\)

Example Question #25 : Squares

What is the length of a rectangular room with a perimeter of \(\displaystyle 86ft\) and a width of \(\displaystyle 18ft?\)

 

Possible Answers:

\(\displaystyle 21ft\)

\(\displaystyle 22ft\)

\(\displaystyle 24ft\)

\(\displaystyle 23ft\)

\(\displaystyle 25ft\)

Correct answer:

\(\displaystyle 25ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 86=2l+2(18)\)

\(\displaystyle 86=2l+36\)

Subtract \(\displaystyle 36\) from both sides

\(\displaystyle 88-36=2l+36-36\)

\(\displaystyle 50=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{50}{2}=\frac{2l}{2}\)

\(\displaystyle 25=l\)

Learning Tools by Varsity Tutors