Intermediate Geometry : How to find an angle in a pentagon

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find An Angle In A Pentagon

The angles at 3 verticies of a pentagon are 60, 80 and 100.  Which of the following could NOT be the measures of the other 2 angles?

Possible Answers:

\displaystyle 80,220

\displaystyle 150,150

\displaystyle 190,110

\displaystyle 140,150

\displaystyle 50,250

Correct answer:

\displaystyle 140,150

Explanation:

The sum of the angles in a polygon is

\displaystyle 180(n-3)

For a pentagon, this equals 540. Since the first 3 angles add up to 240, the remaining 2 angles must add up to \displaystyle 540-240=300^{\circ}

Example Question #1 : How To Find An Angle In A Pentagon

What is the sum of three angles in a hexagon if the perimeter of the hexagon is \displaystyle 60\:cm?

Possible Answers:

\displaystyle 360^{\circ}

\displaystyle 420^{\circ}

\displaystyle 240^{\circ}

\displaystyle 60^{\circ}

\displaystyle 120^{\circ}

Correct answer:

\displaystyle 360^{\circ}

Explanation:

The perimeter in this question is irrelevant. Use the interior angle formula to determine the total sum of the angles in a hexagon.

\displaystyle \Theta =(n-2)\cdot180

There are six interior angles in a hexagon.

\displaystyle \Theta =(6-2)\cdot180 = 720^{\circ}

Each angle will be a sixth of the total angle.

\displaystyle \frac{720}{6}= 120^{\circ}

Therefore, the sum of three angles in a hexagon is:

\displaystyle 120^{\circ}+120^{\circ}+120^{\circ}=360^{\circ}

Example Question #2 : Pentagons

Add four interior angles in a regular pentagon. What is the result?

Possible Answers:

\displaystyle 360^{\circ}

\displaystyle 576^{\circ}

\displaystyle 432^{\circ}

\displaystyle 324^{\circ}

\displaystyle 480^{\circ}

Correct answer:

\displaystyle 432^{\circ}

Explanation:

Use the interior angle formula to find the total sum of angles in a pentagon.

\displaystyle \sum \Theta=(n-2) \cdot 180

\displaystyle n=5 for a pentagon, so substitute this value into the equation and solve:

\displaystyle \sum \Theta=(5-2) \cdot 180 = 540^{\circ}

Divide this number by 5, since there are five interior angles.

\displaystyle \frac{540^{\circ}}{5}=108^{\circ}

The sum of four interior angles in a regular pentagon is:

\displaystyle 108^{\circ}+108^{\circ}+108^{\circ}+108^{\circ} =432^{\circ}

Example Question #1 : How To Find An Angle In A Pentagon

What is the sum of two interior angles of a regular pentagon if the perimeter is 6?

Possible Answers:

\displaystyle 130

\displaystyle 216

\displaystyle 108

\displaystyle 288

\displaystyle 540

Correct answer:

\displaystyle 216

Explanation:

The perimeter of a regular pentagon has no effect on the interior angles of the pentagon.

Use the following formula to solve for the sum of all interior angles in the pentagon.

\displaystyle \sum\theta=(n-2)\cdot 180

Since there are 5 sides in a pentagon, substitute the side length \displaystyle n=5.

\displaystyle \sum\theta=(5-2)\cdot 180=540

Divide this by 5 to determine the value of each angle, and then multiply by 2 to determine the sum of 2 interior angles.

\displaystyle \frac{540}{5}=108

\displaystyle 108*2=216

The sum of 2 interior angles of a pentagon is \displaystyle 216.

Example Question #3 : How To Find An Angle In A Pentagon

Suppose an interior angle of a regular pentagon is \displaystyle 12x.  What is \displaystyle x?

Possible Answers:

\displaystyle 5

\displaystyle 9

\displaystyle 10

\displaystyle 3

\displaystyle 225

Correct answer:

\displaystyle 9

Explanation:

The pentagon has 5 sides. To find the value of the interior angle of a pentagon, use the following formula to find the sum of all interior angles.

\displaystyle \sum\theta=(n-2)\cdot 180

Substitute \displaystyle n=5.

\displaystyle \sum\theta=(5-2)\cdot 180=540

Divide this number by 5 to determine the value of each interior angle.

\displaystyle \frac{540}{5}=108

Every interior angle is 108 degrees.  The problem states that an interior angle is \displaystyle 12x.  Set these two values equal to each other and solve for \displaystyle x.

\displaystyle 12x=108

\displaystyle x=9

Example Question #1 : Pentagons

Let the area of a regular pentagon be \displaystyle 15.  What is the value of an interior angle?

Possible Answers:

\displaystyle 540^\circ

\displaystyle 720^\circ

\displaystyle 64^\circ

\displaystyle 216^\circ

\displaystyle 108^\circ

Correct answer:

\displaystyle 108^\circ

Explanation:

Area has no effect on the value of the interior angles of a pentagon. To find the sum of all angles of a pentagon, use the following formula, where \displaystyle n is the number of sides:

\displaystyle \sum\theta=(n-2)\cdot 180

There are 5 sides in a pentagon.  

\displaystyle \sum\theta=(5-2)\cdot 180=540

Divide this number by 5 to determine the value of each angle.

\displaystyle \frac{540}{5}=108^\circ

Example Question #2 : How To Find An Angle In A Pentagon

True or false: Each of the five angles of a regular pentagon measures \displaystyle 120^{\circ }.

Possible Answers:

False

True

Correct answer:

False

Explanation:

A regular polygon with \displaystyle N sides has \displaystyle N congruent angles, each of which measures 

\displaystyle \frac{(N-2)180^{\circ }}{N}

Setting \displaystyle N = 5, the common angle measure can be calculated to be

\displaystyle \frac{(5-2)180^{\circ }}{5} = \frac{3 \cdot 180^{\circ }}{5} = \frac{540^{\circ }}{5} = 108^{\circ }

The statement is therefore false.

Example Question #3 : How To Find An Angle In A Pentagon

True or false: Each of the exterior angles of a regular pentagon measures \displaystyle 72 ^{\circ }.

Possible Answers:

True

False

Correct answer:

True

Explanation:

If one exterior angle is taken at each vertex of any polygon, and their measures are added, the sum is \displaystyle 360^{\circ }. Each exterior angle of a regular pentagon has the same measure, so if we let \displaystyle t be that common measure, then

\displaystyle 5t = 360 ^{\circ }

Solve for \displaystyle t:

\displaystyle 5t \div 5 = 360 ^{\circ } \div 5

\displaystyle t = 72 ^{\circ }

The statement is true.

Example Question #9 : How To Find An Angle In A Pentagon

Given: Pentagon \displaystyle PENTA.

\displaystyle m \angle P = 108 ^{\circ }

True, false, or undetermined: Pentagon \displaystyle PENTA is regular.  

Possible Answers:

False

True

Undetermined 

Correct answer:

Undetermined 

Explanation:

Suppose Pentagon \displaystyle PENTA is regular. Each angle of a regular polygon of \displaystyle N sides has measure

\displaystyle \frac{(N-2)180^{\circ }}{N}

A pentagon has 5 sides, so set \displaystyle N = 5; each angle of the regular hexagon has measure  

\displaystyle \frac{(5-2)180^{\circ }}{5} = \frac{ 3 \cdot 180^{\circ }}{5} = 108^{\circ }

Since one angle is given to be of measure \displaystyle 108 ^{\circ }, the pentagon might be regular - but without knowing more, it cannot be determined for certain. Therefore, the correct choice is "undetermined".

Learning Tools by Varsity Tutors