All High School Physics Resources
Example Questions
Example Question #72 : Electric Circuits
Two aluminum wires have the same resistance. If one has twice the length of the other, what is the ratio of the diameter of the longer wire to the diameter of the shorter wire?
Let’s start with the resistivity equation
The area of a wire is the area of a circle. So let’s substitute that into our equation
This can be simplified to
Since we know that both resistors have the same resistivity and the same resistance, we can set these equations equal to each other.
Many things fallout which leaves us with
We know that the second wire is twice the length as the first
So we can substitute this into our equation
The length of the wire drops out of the equation
Now we can solve for the diameter of the longer wire.
Take the square root of both sides
Therefore the ratio of the long to the short wire is
Or
Example Question #73 : Electric Circuits
What is the diameter of a length of tungsten wire whose resistance is ohms?
We will use the resistivity equation to solve for this. We know
Length =
Resistance =
ρ of Tungsten =
The equation for resistivity is
We can rearrange this equation to solve for
In this case the area of the wire is the area of a circle which is equal to
We can rearrange this to get the radius by itself
To find the diameter we need to multiply this value by 2.
Example Question #1 : Resistivity
The resistivity of most common metals __________________ .
increases as the temperature increases
varies randomly as the temperature increases
remains constant over wide temperature ranges
decreases as the temperature increases
increases as the temperature increases
At higher temperature, the atoms are moving more rapidly and are arranged in a less orderly way. Therefore it is expected that these fast moving atoms are more likely to interfere with the flow of electrons. If there is more interference in the flow of electrons, then there is a higher resistivity.
Example Question #2 : Resistivity
Which Resistors are connected in parallel?
and
All answer choices are correct
None of the answer choices are correct
and
and
and
Resistors are in parallel when the electric current passes through two or more branches or connected parts at the same time before it combines again. After the current leaves the battery it travels to . Then the current splits and travels between the other two resistors before the current coming back together and connecting back to the battery.
Example Question #2 : Resistivity
How does adding resistors in parallel affect the overall current of the circuit?
The current increases
The current stays the same
The current decreases
The current increases
Adding resistors in parallel decrease the overall equivalent resistance as they are added using the equation
Since the overall equivalent resistance is decreased, if the voltage is constant the overall current would increase.
Therefore
This shows the inverse relationship between the two values.
Example Question #25 : Resistors
Which resistor has the greatest current going through it?
Assume all the resistors are equal.
and
and
As we examine the circuit we first come across the first two resistors. These resistors are in parallel. In parallel circuits, the current splits to go down each branch. In this case, the resistors are of equal value meaning that the current is split evenly between the two.
We then come across another parallel branch with two resistors on one side and a single resistor on the other side. The two resistors in series add up to create more resistance on the top branch. The single resistor on its own has less resistance.
Since current always chooses the path of least resistance, more current will flow through the single resistor, than through the branch with two resistors in series.
Therefore, would have the greatest resistance flowing through it.