High School Math : Understanding Vector Calculations

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Vector

Find the magnitude of .

Possible Answers:

Correct answer:

Explanation:

 therefore the vector is

To solve for the magnitude:


 

Example Question #22 : Calculus Ii — Integrals

Let  and  be the following vectors:   and . If  is the acute angle between the vectors, then which of the following is equal to ?

Possible Answers:

Correct answer:

Explanation:

The cosine of the acute angle between two vectors is given by the following formula:

, where  represents the dot product of the two vectors,   is the magnitude of vector a, and  is the magnitude of vector b.

First, we will need to compute the dot product of the two vectors. Let's say we have two general vectors in space (three dimensions),  and . Let the components of  be  and the components of  be . Then the dot product  is defined as follows:

 .

Going back to the original problem, we can use this definition to find the dot product of   and .

The next two things we will need to compute are  and 

Let the components of a general vector  be . Then  is defined as .

Thus, if   and , then

and 

.

Now, we put all of this information together to find the cosine of the angle between the two vectors.

We just need to simplify this. 

.

In order to get it completely simplified, we have to rationalize the denominator by multiplying the numerator and denominator by the sqare root of 21.

.

We just have one more step. We need to solve for the value of the angle. In order to do this, we can take the inverse cosine of both sides of the equation.

.

The answer is .

Learning Tools by Varsity Tutors