High School Math : Finding Indefinite Integrals

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Finding Indefinite Integrals

What is the indefinite integral of ?

Possible Answers:

Correct answer:

Explanation:

Just like with the derivatives, the indefinite integrals or anti-derivatives of trig functions must be memorized.

Example Question #81 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral of our given equation, we can use the reverse power rule: we raise the exponent by one and then divide by that new exponent.

Don't forget to include a to compensate for any constant!

Example Question #81 : Calculus Ii — Integrals

What is the indefinite integral of  with respect to ?

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, we're going to use the reverse power rule: raise the exponent of the variable by one and then divide by that new exponent.

Be sure to include  to compensate for any constant!

Example Question #22 : Finding Indefinite Integrals

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral, or anti-derivative, we can use the reverse power rule. We raise the exponent of each variable by one and divide by that new exponent.

Don't forget to include a  to cover any constant!

Simplify.

Example Question #52 : Finding Integrals

Possible Answers:

Correct answer:

Explanation:

To find the indefinite integral of , we can use the reverse power rule. To do this, we raise our exponent by one and then divide the variable by that new exponent.

Don't forget to include a  to cover any constant!

Learning Tools by Varsity Tutors