All High School Chemistry Resources
Example Questions
Example Question #3 : Lewis Diagrams
Which answer option correctly depicts the Lewis dot structure of sodium chloride?
When drawing a Lewis dot structure, we are always trying to reach an electron count where all atoms involved are stable and (usually) have full octets. We are also trying to estabilsh a structure in which we have the smallest formal charge possible. The general rule is first to draw out all of the elements involved and their valence electrons, then start piecing them together trying to reduce the formal charge and get all elements involved to an octet. There are a couple exceptions to the octet rule.
Sodium and chlorine form an ionic bond, meaning that one atom will donate an electron and the other will receive it. This gives each atom a charge. Chlorine has seven valence electrons, while sodium has one valence electron. For each atom to arrive at an octet, sodium will need to lose one electron and chlorine will need to gain one electron. This would give chlorine a negative charge, and sodium a positive charge.
Thus, the answer is a sodium with a positive charge (due to one lost electron) and a chlorine with eight electrons and a negative charge (due to one electron gained).
Example Question #93 : Elements And Compounds
What is the Lewis dot structure for ?
When drawing a Lewis dot structure, we are always trying to reach an electron count where all atoms involved are stable and (usually) have full octets. We are also trying to estabilsh a structure in which we have the smallest formal charge possible. The general rule is first to draw out all of the elements involved and their valence electrons, then start piecing them together trying to reduce the formal charge and get all elements involved to an octet. There are a couple exceptions to the octet rule.
In this case, boron actually has an incomplete octet. Though there are resonance forms in which boron has a full octet, when you calculate the formal charge of these configurations it will not be zero.
Example Question #1 : Help With Vsepr Theory And Geometry
What is the molecular geometry of an ammonia molecule with the formula ?
Tetrahedral
Trigonal planar
Trigonal bipyramidal
Trigonal pyramidal
Trigonal pyramidal
In an ammonia molecule, the nitrogen is bonded to three hydrogen atoms and also has a lone electron pair. This lone pair will repel the three hydrogens out of a planar orientation, which results in a trigonal pyramidal geometry.
Compounds with the general formula AX3 and one lone pair will be trigonal pyramidal.
Compounds with the general formula AX3 and no lone pairs will be trigonal planar.
Compounds with the general formula AX4 and no lone pairs will be tetrahedral.
Compounds with the general formula AX5 and no lone pairs will be trigonal bipyramidal.
Example Question #2 : Help With Vsepr Theory And Geometry
What is the bond angle found in a methane molecule with the formula ?
Methane has a carbon atom attached to four hydrogen atoms. In order to be as far as possible from one another, the hydrogen atoms will orient themselves around the carbon in a tetrahedral geometry. Tetrahedral geometries have bond angles of between each constituent.
Example Question #101 : Elements And Compounds
Which of the following choices correctly describes the VSEPR shape of the water molecule, ?
None of the answer choices correctly describe the VSEPR shape of the water molecule
Linear
Trigonal planar
Tetrahedral
Trigonal bipyramidal
Tetrahedral
In the water molecule, there are four electron pairs. Two of them are bonded and two of them are lone pairs. This causes the water molecule to have a tetrahedral shape (it is important to note that it is a bent tetrahedral shape due to the two lone pairs).
Example Question #53 : Compounds And Bonding
Which of the following compounds has a bent shape according to VSEPR theory?
Generally, a central atom bound to two peripheral atoms will result in a linear shape, as exemplified by carbon dioxide. Exceptions come into play, however, with the introduction of lone pairs of electrons. These lone pairs carry a negative charge, pushing other atoms (and their negatively-charged electrons) farther away. In water, the central oxygen atom is bound to two hydrogen atoms and carries two lone pairs of electrons. As a result, the lone pairs propel the hydrogen atoms away from the linear structure, "bending" the molecule. The result is known as a bent molecular geometry, according to VSEPR theory. Any molecule in which the central atom is bound to two atoms and carries two lone pairs will result in a bent shape.
Carbon dioxide and cyanide are both linear. Ammonia is trigonal pyramidal. Methane is tetrahedral.
Example Question #1 : Help With Intermolecular Forces
Which of the following cannot participate in hydrogen bonding?
All of these can participate in hydrogen bonding
Chlorine
Nitrogen
Oxygen
Fluorine
Chlorine
Hydrogen bonds are intermolecular forces between hydrogens and adjacent molecules. These adjacent molecules must contain either fluorine, oxygen, or nitrogen, the three most electronegative atoms. These electronegative atoms pull electrons away from the bonded hydrogen, giving it a small positive charge and giving themselves a slightly negative charge. When the positive hydrogen of one molecule come close to a negative charge on another, the opposite charges attract and pull the molecules close together to form a hydrogen bond. The hydrogen must be bonded to oxygen (-OH), fluorine (HF), or nitrogen (-NH) to have this charging effect.
Example Question #2 : Help With Intermolecular Forces
Which of the following molecules cannot participate in hydrogen bonding?
Hydrogen bonding takes place when a hydrogen atom is attracted to a highly electronegative atom in another molecule. Hydrogen bonding takes place between hydrogen and either nitrogen, oxygen, or fluorine. Carbon has an electronegativity similar to hydrogen's, and will not hydrogen bond with hydrogens in other molecules.
Only molecules with -OH, -FH, or -NH groups can form hydrogen bonds.
Example Question #11 : Intermolecular Forces
What intermolecular forces can be found in a molecule of ethene?
London dispersion forces only
London dispersion forces and hydrogen bonding
London dispersion forces, hydrogen bonding, and dipole-dipole attraction
Dipole-dipole attraction and ionic bonding
London dispersion forces and dipole-dipole attraction
London dispersion forces only
Ethene is an organic molecule composed of two carbon atoms, joined by a double bond, and four hydrogen atoms.
Ethene, like all molecules, exhibits London dispersion forces. This molecule, however, has no net dipole moment, so it will not exhibit dipole-dipole attraction. Also, even though it contains hydrogens, it does not exhibit hydrogen bonding. To exhibit hydrogen bonding, the hydrogen atoms must be attached to more electronegative atoms, namely nitrogen, fluorine, or oxygen. Finally, ionic bonding is only present in ionic compounds, not organic compounds.
Example Question #3 : Help With Intermolecular Forces
Which of the following intermolecular forces is broken when water is boiled?
Double bonds
Hydrogen bonds
None of these answers
Covalent bonds
Ionic bonds
Hydrogen bonds
Intermolecular forces are transient forces between two separate molecules. Water is a polar molecule. The oxygen atom carries a slight positive charge, while the hydrogen atoms carry slight negative charges. This is the result of the large difference in electronegativity between oxygen and hydrogen. When two water molecules are next to each other, the partially positive hydrogen will be attracted to the partially negative oxygen. This attraction is known as a hydrogen bond.
Ionic bonds, covalent bonds, and double bonds are all intramolecular forces. These are stable bonds between atoms that establish the identity of the molecule. Breaking any of these bonds would alter the identity of the compound.
Certified Tutor
Certified Tutor