GRE Subject Test: Math : Matrix Operations

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Matrix Operations

Perform the following operation.

\(\displaystyle \begin{bmatrix} 2& 4& 1\\ 5& 3& -2\\ -3& -1&0 \end{bmatrix}\) \(\displaystyle \cdot \begin{bmatrix} 2\\ 4\\ 1 \end{bmatrix}\) \(\displaystyle +\begin{bmatrix} -7\\ 4\\ 11 \end{bmatrix}\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 14& 24& 1 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 7\\ 20\\ 7 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 14\\ 24 \\ 1 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 34\\ -25\\ 7 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 14\\ 24 \\ 1 \end{bmatrix}\)

Explanation:

The first step to solving this operation is to do the multiplication:

\(\displaystyle \begin{bmatrix} 2& 4& 1\\ 5& 3& -2\\ -3& -1&0 \end{bmatrix}\) \(\displaystyle \cdot \begin{bmatrix} 2\\ 4\\ 1 \end{bmatrix}\) \(\displaystyle =\begin{bmatrix} 2(2)& 4(4)& 1(1)\\ 5(2)& 3(4)& -2(1)\\ -3(2)& -1(4)&0(1) \end{bmatrix}\)\(\displaystyle =\begin{bmatrix} 4+16+1\\ 10+12-2\\ -6-4+0 \end{bmatrix}\)\(\displaystyle =\begin{bmatrix} 21\\ 20\\ -10 \end{bmatrix}\)

Once we have multiplied the matrices, we can perform the addition portion:

\(\displaystyle \begin{bmatrix} 21\\ 20\\ -10 \end{bmatrix} + \begin{bmatrix} -7\\ 4\\ 11 \end{bmatrix} = \begin{bmatrix} 14\\ 24\\ 1 \end{bmatrix}\)

Example Question #1 : Linear Algebra

Perform the following operation.

\(\displaystyle 3\left(\begin{bmatrix} 7\\ -3\\ 2 \end{bmatrix}+\begin{bmatrix} -1\\ 4\\ 6 \end{bmatrix}\right)\)

Possible Answers:

\(\displaystyle \begin{bmatrix} 20\\ -5\\ 12 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 4\\ 9\\ 20 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 18& 3& 24 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 18\\ 3\\ 24 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 18\\ 3\\ 24 \end{bmatrix}\)

Explanation:

The first step is to solve whatever is in the parentheses, in this case it is addition: 

\(\displaystyle \begin{bmatrix} 7\\ -3\\ 2 \end{bmatrix}+\begin{bmatrix} -1\\ 4\\ 6 \end{bmatrix}=\begin{bmatrix} 6\\ 1\\ 8 \end{bmatrix}\)

We then substitute our solution into the parentheses:

\(\displaystyle 3\left(\begin{bmatrix} 6\\ 1\\ 8 \end{bmatrix}\right)\)

Our next, and final step in this problem, is to carry out the multiplication:

\(\displaystyle 3\left(\begin{bmatrix} 6\\ 1\\ 8 \end{bmatrix}\right)=\begin{bmatrix} 18\\ 3\\ 24 \end{bmatrix}\)

Learning Tools by Varsity Tutors