All GRE Subject Test: Biology Resources
Example Questions
Example Question #1 : Plant Biology
How do plants transport water against gravity?
Passive diffusion
Capillary action
Water pumps
Active transport
Aquaporins
Capillary action
Plants do not have the ability to actively transport water to their respective cells. Instead, water undergoes capillary action, which allows it to flow upward against gravity. When the water is located in a very narrow chamber, such as the xylem of a plant, it creates intermolecular interactions with the walls of the chamber. These interactions allow small amounts of the water to "climb" the chamber walls. Due to the cohesion of water, whereby it is attracted to itself, more water molecules follow the "climbing" adhesion molecules. This subsequently allows the adhering molecules to climb higher, and the joint interaction of the adhesion and cohesion eventually allow the water to reach the topmost region of the plant (the leaves). Water is then released from the stomata, furthering the pull of water to the region of low pressure.
Example Question #1 : Plant Biology
Which of the following best describes how water is transported from the roots of a tree to the tallest branches?
Transpiration from the tree's leaves causes tension (negative pressure) to increase in the tree's xylem. As water exits the leaves, the adhesion of water molecules pulls more molecules into the roots and upward.
Transpiration from the tree's leaves causes tension (negative pressure) to increase in the tree's xylem. As water exits the leaves, the cohesion of water molecules pulls more molecules into the roots and upward.
Transpiration from the tree's leaves causes tension (negative pressure) to increase in the tree's phloem. As water exits the leaves, the adhesion of water molecules pulls more molecules into the roots and upward.
Transpiration from the tree's leaves causes tension (negative pressure) to increase in the tree's phloem. As water exits the leaves, the cohesion of water molecules pulls more molecules into the roots and upward.
Transpiration from the tree's leaves causes tension (negative pressure) to increase in the tree's xylem. As water exits the leaves, the cohesion of water molecules pulls more molecules into the roots and upward.
One of water's most distinctive properties is cohesion—that is, the tendency of water molecules to "stick" to one another. In plants, this cohesion results in columns of water that stretch through the plant's xylem (the vascular tissue responsible for transport of water), from the roots all the way to the leaves. During transpiration, water evaporates from plants' leaves. Because of the cohesion of water, whenever water evaporates, more molecules are "pulled" into the roots to maintain the column of water. This is the transpirational pull-cohesion tension theory.
In contrast, adhesion is the tendency of water molecules to "stick" to other substances, such as the walls of a glass. Adhesion is responsible for the curved meniscus of water in a graduated cylinder. Phloem is responsible for sugar and carbohydrate transport in plants, while xylem transports water.
Certified Tutor
Certified Tutor