GMAT Math : Right Triangles

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #143 : Triangles

 is a right triangle with right angle . Evaluate .

Statement 1:  and .

Statement 2:   and .

Possible Answers:

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

EITHER statement ALONE is sufficient to answer the question.

BOTH statements TOGETHER are insufficient to answer the question.

Correct answer:

EITHER statement ALONE is sufficient to answer the question.

Explanation:

Either statement alone is sufficient.

From either statement alone, it can be determined that  and ; each statement gives one angle measure, and the other can be calculated by subtracting the first from , since the acute angles of a right triangle are complementary. 

Also, since  is the right angle,  is the hypotenuse, and , opposite the  angle, the shorter leg of a 30-60-90 triangle. From either statement alone, the 30-60-90 Theorem can be used to find the length of longer leg . From Statement 1 alone,  has length  times that of the hypotenuse, or . From Statement 2 alone,  has length  of the shorter leg, or .

Example Question #2611 : Gmat Quantitative Reasoning

The longest side of a right triangle has a length of .  If the base of the triangle is  long, how long is the other side of the triangle?

Possible Answers:

Correct answer:

Explanation:

This is a Pythagorean theorem question.  The lengths of a right triangle are related by the following equation:    In the problem statement,  and  Therefore, 

Example Question #1 : Dsq: Calculating Whether Right Triangles Are Similar

You are given that  and  are right triangles with their right angles at  and , respectively. Is it true that  ?

1) 

2)  and 

Possible Answers:

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is not sufficient.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is not sufficient.

BOTH statements TOGETHER are NOT sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

EITHER Statement 1 or Statement 2 ALONE is sufficient to answer the question.

Correct answer:

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is not sufficient.

Explanation:

All right angles are congruent, so .

Since Statement 1 tells us that , this sets up the conditions for the Angle-Angle Similarity Postulate, so .

Statement 2 alone only tells us their hypotenuses. Congruence between one pair of angles and the measures of one pair of sides is insufficient information to determine whether two triangles are similar (given one angle, at least two pairs of proportional sides are required).

Therefore, the answer is that Statement 1 alone, but not Statement 2, is sufficient.

Example Question #145 : Triangles

You are given two right triangles:  with right angle , and  with right angle 

True or false: 

Statement 1: 

Statement 2: 

Possible Answers:

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are insufficient to answer the question. 

EITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Correct answer:

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Explanation:

Each statement alone only gives a relationship between two sides within one triangle, so neither alone answers the question of the similarity of the two triangles.

Assume both statements are true. Then, since ,  

By the multiplication property of inequality, since 

 and ,

Since, by definition,  requires that .

Example Question #146 : Triangles

You are given two right triangles:  with right angle , and  with right angle 

True or false: 

Statement 1: The ratio of the perimeter of  to that of  is 7 to 6.

Statement 2: 

Possible Answers:

BOTH statements TOGETHER are insufficient to answer the question. 

EITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Correct answer:

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

Explanation:

Assume Statement 1 alone. The ratio of the perimeters does not in and of itself establish similarity, since only one angle congruence is known.

Assume Statement 2 alone. The equation can be rewritten as a proportion statement:

This establishes that two pairs of corresponding sides are in proportion. Their included angles are both right angles, so , and  follows from the Side-Angle-Side Similarity Theorem.

Example Question #147 : Triangles

You are given two right triangles:  with right angle , and  with right angle 

True or false: 

Statement 1: 

Statement 2: 

Possible Answers:

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are insufficient to answer the question. 

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

EITHER statement ALONE is sufficient to answer the question.

Correct answer:

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Explanation:

Assume Statement 1 alone. The statement used to find a sidelength ratio:

However, since we only know one sidelength ratio, similarity cannot be proved or disproved.

From Statement 2, another ratio can be found:

Again, since only one sidelength ratio is known, similarty can be neither proved nor disproved.

Assume both statements to be true. Similarity, by definition, requires that 

From the two statements together, it can be seen that , so .

Example Question #2 : Dsq: Calculating Whether Right Triangles Are Similar

You are given two right triangles:  with right angle , and  with right angle 

True or false: 

Statement 1:  and  are complimentary.

Statement 2:  and  are complimentary.

Possible Answers:

BOTH statements TOGETHER are insufficient to answer the question. 

EITHER statement ALONE is sufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Correct answer:

EITHER statement ALONE is sufficient to answer the question.

Explanation:

The acute angles of a right triangle are complementary, so  and  are a complementary pair, as are  and .

If Statement 1 is assumed—that is, if  and  are a complementary pair—then, since two angles complementary to the same angle—here, —must be congruent, . Since right angles ,   follows by way of the Angle-Angle Similarity Postulate, and Statement 1 turns out to provide sufficient information. By a similar argument, Statement 2 is also sufficient.

Example Question #2 : Dsq: Calculating Whether Right Triangles Are Similar

You are given two right triangles:  with right angle , and  with right angle 

True or false: 

Statement 1: 

Statement 2: 

Possible Answers:

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

EITHER statement ALONE is sufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

BOTH statements TOGETHER are insufficient to answer the question. 

Correct answer:

EITHER statement ALONE is sufficient to answer the question.

Explanation:

Assume Statement 1 alone is true. Then, since , both being right angles, and  from Statement 1,  follows by way of the Angle-Angle Similarity Postulate. A similar argument shows Statement 2 also provides sufficient information.

Example Question #3 : Dsq: Calculating Whether Right Triangles Are Similar

You are given two right triangles:  with right angle , and  with right angle 

True or false: 

Statement 1: The ratio of the perimeter of  to that of  is  to .

Statement 2: .

Possible Answers:

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

BOTH statements TOGETHER are insufficient to answer the question. 

EITHER statement ALONE is sufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Correct answer:

BOTH statements TOGETHER are insufficient to answer the question. 

Explanation:

Assume both statements are true.

While in two similar triangles, the ratio of the perimeters, given in Statement 1, is indeed equal to that of the ratios of the lengths of the hypotenuses, given in Statement 2, this is not a sufficient condition for similarity. For example:

Case 1: 

Case 2:

In each case, the conditions of the main problem and both statements are met, since:

Both triangles are right - each Pythagorean triple is a multiple of Pythagorean triple 3-4-5;

The ratio of the perimeters is ; and,

.

But in Case 1, 

, since , and the similarity follows by way of the Side-Side-Side Similarity Principle. 

In Case 2, 

, since . This violates the conditions of similarity (note that in both cases, , but this is a different statement).

The two statements together are inconclusive.

Example Question #8 : Dsq: Calculating Whether Right Triangles Are Similar

Given:  and , where  and  are right angles.

True or false: 

Statement 1: 

Statement 2:  is an isosceles triangle.

Possible Answers:

BOTH statements TOGETHER are insufficient to answer the question. 

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.

Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.

EITHER statement ALONE is sufficient to answer the question.

Correct answer:

BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.

Explanation:

Each of Statement 1 and Statement 2 gives information about only one of the triangles, so neither statement alone is sufficient.

Assume both statements are true. From Statement 1,  and  is right and measures .

From Statement 2 alone,  is isosceles; the acute angles of an isosceles right triangle must both measure , so, in particular,  . Also, it is given that  is right.

 and  (both of the latter being right angles), and by the Angle-Angle Postulate, .

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors