All GMAT Math Resources
Example Questions
Example Question #11 : Dsq: Calculating An Angle In An Acute / Obtuse Triangle
Is an acute, right, or obtuse triangle?
Statement 1: and are both acute.
Statement 2: and are both acute.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Every triangle has at least two acute angles, so neither statement is sufficient to answer the question. The two statements together, however, are enough to prove to have three acute angles and to therefore be an acute triangle.
Example Question #31 : Acute / Obtuse Triangles
Is an isosceles triangle?
Statement 1:
Statement 2:
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
From Statement 1 it can be deduced that . Similarly, from Statement 2 it can be deduced that . Neither statement alone gives information about the other two angles. Both statements together, however, prove that , making the triangle isosceles by the Isosceles Triangle Theorem.
Example Question #391 : Data Sufficiency Questions
True or false: is equilateral.
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
An equilateral triangle has three congruent angles, each of which measure . Both statements contradict this condition, proving that is not equilateral.
Example Question #32 : Triangles
True or false: is equilateral.
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
An equilateral triangle has three congruent angles, each of which measure . Statement 1 alone establishes the congruence of two angles but not the third; for example, the triangle could be and fit the condition. Statement 2 alone only establishes the measure of one angle.
Assume both statements are true. The degree measures of the angles of a triangle add up to , and, since , we can set up and solve:
, so in .
Example Question #272 : Geometry
is an exterior angle of at .
Is an acute triangle, a right triangle, or an obtuse triangle?
Statement 1: is an acute angle.
Statement 2:
BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.
STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.
EITHER STATEMENT ALONE provides sufficient information to answer the question.
STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.
BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.
EITHER STATEMENT ALONE provides sufficient information to answer the question.
Exterior angle forms a linear pair with its interior angle . Either both are right, or one is acute and one is obtuse. From Statement 1 alone, since is acute, is obtuse, and is an obtuse triangle.
Statement 2 alone also provides sufficient information; the sum of the measures of interior angles of a triangle is ; since the sum of the measures of two of them, and , is , the other angle, , has measure , making obtuse, and making an obtuse triangle.
Example Question #16 : Dsq: Calculating An Angle In An Acute / Obtuse Triangle
Is an acute triangle, a right triangle, or an obtuse triangle?
Statement 1:
Statement 2:
STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.
BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.
BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.
STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.
EITHER STATEMENT ALONE provides sufficient information to answer the question.
STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.
Statement 1 is true for any triangle by the Triangle Inequality, which states that the sum of the lengths of any two sides is greater than that of the third. Therefore, Statement 1 provides unhelpful information.
Statement 2 alone, however, proves that is obtuse, since the sum of the squares of the lengths of two sides exceeds the square of the length of the third.
Example Question #31 : Triangles
A triangle has an interior angle of measure . Give the measures of the other two angles.
Statement 1: The triangle is isosceles.
Statement 2: The triangle is obtuse.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is not sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is not sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Knowing only the triangle is obtuse only tells you that there is one obtuse angle, but along with the fact that there is a angle, this allows no further conclusions.
Knowing only that the triangle is isosceles, you can deduce from the Isosceles Triangle Theorem that there are two angles of equal measure; as the measures of the three angles are , there are two possibilities: the triangle is a triangle, or it is a triangle, but you cannot choose between the two without further information.
Knowing both facts allows you to choose the first of those two options.
The answer is that both statements together are sufficient to answer the question, but neither statement alone is sufficient to answer the question.
Example Question #1 : Dsq: Calculating The Length Of The Hypotenuse Of An Acute / Obtuse Triangle
Find the hypotenuse of an obtuse triangle.
Statement 1: Two given lengths with an inscribed angle.
Statement 2: Two known angles.
Statement 1: Two given lengths with an inscribed angle.
Draw a picture of the scenario. The values of , , and angle are known values.
Use the Law of Cosines to determine side length .
Statement 2: Two known angles.
There is insufficient information to solve for the length of the hypotenuse with only two interior angles. The third angle can be determined by subtracting the 2 angles from 180 degrees.
The triangle can be enlarged or shrunk to any degree with any scale factor and still yield the same interior angles. There must also be at least 1 side length in order to calculate the hypotenuse of the triangle by the Law of Cosines.
Therefore:
Example Question #1 : Dsq: Calculating The Length Of The Hypotenuse Of An Acute / Obtuse Triangle
Find the length of the hypotenuse of obtuse triangle TLC:
I)
II) Side T is
Either statement is sufficient to answer the question.
Neither statement is sufficient to answer the question. More information is needed.
Both statements are needed to answer the question.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Both statements are needed to answer the question.
Find the length of the hypotenuse of obtuse triangle TLC:
I)
II) Side T is
Using I), we can find the measure of all 3 angles:
Next, use II) and the Law of sines to find the hypotenuse:
And we needed both statements to find it!
Example Question #1 : Dsq: Calculating The Length Of The Hypotenuse Of An Acute / Obtuse Triangle
For obtuse triangle ABC, what is the length of c?
(1) and
(2) c is an integer,
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
EACH statement ALONE is sufficient.
BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.
Since this is an obtuse triangle, pythagorean theorem does not apply.
Statement 1 by itself will only determine a range of values c utilizing the 3rd side rule of triangles. . Therefore, statement 1 alone is insufficient.
Statement 2 by itself will determine that c is either 10 or 11. Therefore, statement 2 alone is insufficient.
When taken together, statements 1 and 2 define a definitive value for c: . Therefore, BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient.