GMAT Math : Problem-Solving Questions

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Calculating The Endpoints Of A Line Segment

Consider segment  with endpoint  at . If the midpoint of  can be found at , what are the coordinates of point ?

 

Possible Answers:

Correct answer:

Explanation:

Recall midpoint formula:

In this case we have (x'y') and one of our other (x,y) points.

Plug and chug:

If you make this into two equations and solve you get the following.

 

 

 

Example Question #11 : Coordinate Geometry

A line segement on the coordinate plane has endpoints  and . Which of the following expressions is equal to the length of the segment?

Possible Answers:

Correct answer:

Explanation:

Apply the distance formula, setting

:

Example Question #12 : Coordinate Geometry

What is distance between  and ?

Possible Answers:

Correct answer:

Explanation:

Example Question #1 : Distance Formula

What is the distance between the points  and ?

Possible Answers:

2\sqrt{5}

Correct answer:

Explanation:

Let's plug our coordinates into the distance formula.

\sqrt{(2-7)^{2}+(5-17)^{2}}= \sqrt{(-5)^{2}+(-12)^{2}} = \sqrt{25+144}= \sqrt{169} = 13

Example Question #2 : Distance Formula

What is the distance between the points  and ?

Possible Answers:

3\sqrt{3}

2\sqrt{5}

Correct answer:

2\sqrt{5}

Explanation:

We need to use the distance formula to calculate the distance between these two points.

\sqrt{(1-5)^{2}+(4-2)^{2}} = \sqrt{(-4)^{2}+(2)^{2}} =\sqrt{20}=\sqrt{4}\sqrt{5}=2\sqrt{5}

Example Question #4 : Calculating The Length Of A Line With Distance Formula

Consider segment  which passes through the points  and .

Find the length of segment .

Possible Answers:

Correct answer:

Explanation:

This question requires careful application of distance formula, which is really a modified form of Pythagorean theorem.

Plug in everthing and solve:

So our answer is 156.6

Example Question #4 : Distance Formula

What is the length of a line segment that starts at the point    and ends at the point    ?

Possible Answers:

Correct answer:

Explanation:

Using the distance formula for the length of a line between two points, we can plug in the given values and determine the length of the line segment by calculating the distance between the two points:

Example Question #1 : Calculating The Equation Of A Tangent Line

Determine the equation of the line tangent to the curve    at the point    ?

Possible Answers:

Correct answer:

Explanation:

To find the equation of a line tangent to a curve at a certain point, we first need to find the slope of the curve at that point. To find the slope of a function at any point, we need its derivative:

Now we can plug in the x value of the given point to find the slope of the function, and therefore the slope of tangent line, at that point:

Now that we have our slope, we can simply plug this value in with the given point to solve for the y intercept of the tangent line:

We have calculated the slope of the tangent line and its y intercept, so the equation for the line tangent to the curve    at the point    in standard form is:

Example Question #1 : Tangent Lines

Determine the equation of the line tangent to the following curve at the point  .

Possible Answers:

Correct answer:

Explanation:

First we find the slope of the tangent line by taking the derivative of the function and plugging in the -value of the point where we want to know the slope:

Now that we know the slope of the tangent line, we can plug it into the equation for a line along with the coordinates of the given point in order to calculate the -intercept:

We now have  and , so we can write the equation of the tangent line:

Example Question #2 : Tangent Lines

Find the equation of a line tangent to the curve  at the point .

Possible Answers:

None of the above equations

Correct answer:

Explanation:

To find the equation of a line tangent to the curve  at the point , we must first find the slope of the curve at the point  by solving the derivative  at that point:

 

Given the slope, we can now plug the given point and the slope at that point into the slope-intercept form of the tangent line  and solve for the -intercept :

Given our slope, the chosen point, and the -intercept, we have the equation of our tangent line:

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors