All GMAT Math Resources
Example Questions
Example Question #23 : Lines
Note: You may assume that and are not parallel lines, but you may not assume that and are parallel lines unless it is specifically stated.
Refer to the above diagram. Is the sum of the measures of and less than, equal to, or greater than ?
Statement 1: There exists a point such that lies on and lies on .
Statement 2: Quadrilateral is not a trapezoid.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Assume Statement 1 alone. Since exists and includes , and are one and the same—and this is . Similarly, is . This means that and have a point of intersection, which is . Since falls between and and falls between and , the lines intersect on the side of that includes points and . By Euclid's Fifth Postulate, the sum of the measures of and is less than .
Assume Statement 2 alone. Since it is given that , the other two sides, and are parallel if and only if Quadrilateral is a trapezoid, which it is not. Therefore, and are not parallel, and the sum of the degree measures of same-side interior angles and is not equal to . However, without further information, it is impossible to determine whether the sum of the measures is less than or greater than .
Example Question #135 : Data Sufficiency Questions
Note: Figure NOT drawn to scale.
Refer to the above figure. Evaluate .
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Assume Statement 1 alone. and are congruent legs of right triangle , so their acute angles, one of which is , measure . and form a pair of vertical, and consequently, congruent, angles, so .
Statement 2 alone gives insufficient information, as and has no particular relationship that would lead to an arithmetic relationship between their angle measures.
Example Question #25 : Lines
Note: Figure NOT drawn to scale.
Refer to the above diagram. What is the measure of ?
Statement 1: is an equilateral triangle.
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
, , and together form a straight angle, so their measures total ; therefore,
Assume Statement 1 alone. The angles of an equilateral triangle all measure , so ; and form a pair of vertical angles, so they are congruent, and consequently, . Therefore,
But with no further information, cannot be calculated.
Assume Statement 2 alone. It follows that
Again, with no further information, cannot be calculated.
Assume both statements to be true. as a result of Statement 1, and from Statement 2, so
Example Question #141 : Data Sufficiency Questions
Note: Figure NOT drawn to scale.
Refer to the above figure. Evaluate .
Statement 1:
Statement 2:
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone. , , , and together form a straight angle, so their degree measures total .
Without further information, no other angle measures, including that of , can be found.
Assume Statement 2 alone. , , , and together form a straight angle, so their degree measures total .
Without further information, no other angle measures, including that of , can be found.
However, if both statements are assumed to be true, it follows from Statements 2 and 1 respectively, as seen before, that and , so
.
Example Question #27 : Lines
Note: Figure NOT drawn to scale.
Refer to the above figure. Give the measure of .
Statement 1:
Statement 2:
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Assume both statements to be true. We show that the two statements provide insufficient information by exploring two scenarios:
Case 1:
and are vertical from and , respectively, so and , and
Case 2:
The conditions of both statements are met, but assumes a different value in each scenario.
Example Question #28 : Lines
Note: Figure NOT drawn to scale.
Refer to the above diagram. Evaluate .
Statement 1:
Statement 2:
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone. , , and together form a straight angle, so their measures total ; therefore,
However, without any further information, we cannot determine the sum of the measures of and .
Assume Statement 2 alone. , , and together form a straight angle, so their measures total ; therefore,
Again, without any further information, we cannot determine the sum of the measures of and .
Assume both statements are true. Since the measures of and can be calculated from Statements 1 and 2, respectively. We can add them:
Example Question #29 : Lines
Note: Figure NOT drawn to scale.
Refer to the above diagram. Evaluate .
Statement 1:
Statement 2: is an equilateral triangle.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone. and are a pair of vertical angles, as are and . Therefore,
By substitution,
.
Assume Statement 2 alone. The angles of an equilateral triangle all measure , so .
, , and together form a straight angle, so ,
Example Question #1 : Dsq: Understanding Intersecting Lines
Refer to the above figure. Jane chose one of the line segments shown in the above diagram but she will not reveal which one. Which one did she choose?
Statement 1: One of the endpoints of the line segment is .
Statement 2: The line segment includes .
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
If we know both statements, then we know that the segment can be either or , since each has endpoint and each includes ; we can not eliminate either, however.
Example Question #2 : Dsq: Understanding Intersecting Lines
How many times does and intersect?
I) is a linear equation with a slope of .
II) is quadratic equation with a vertex at .
Neither statement is sufficient to answer the question. More information is needed.
Either statement is sufficient to answer the question.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Both statements are needed to answer the question.
Neither statement is sufficient to answer the question. More information is needed.
When we have a linear equation and a quadratic equation there are only so many times they can intersect. They can intersect 0 times, once, or twice.
I) Gives us the slope of one equation.
II) Gives us the vertex of our quadratic equation.
If you draw a picture, it should be apparent that we don't have enough information to know exactly how many times they intersect. Our quadratic could be facing up or down, and our linear equation could go straight through both arms, or it could miss it entirely. Therfore, neither statement is sufficient.
Example Question #3 : Dsq: Understanding Intersecting Lines
Find the 4 angles created by the two intersecting lines.
Statement 1: and
Statement 2: and
Statement 1: and
The line is a horizontal line on the x-axis. The line is a vertical line graphed along the y-axis. The lines will create perpendicular angles, which are all 90 degrees.
Statement 2: and
These two functions are in form, which allows us to determine the slopes of these functions. The slopes are 2 and negative half, which are both the negative reciprocal to each other. The property of negative reciprocal slopes state that these two lines are also perpendicular to each other.
Therefore: