All GMAT Math Resources
Example Questions
Example Question #5 : Dsq: Calculating The Length Of The Side Of An Equilateral Triangle
Given two equilateral triangles and , which, if either, is greater, or ?
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
An equilateral triangle has three sides of equal length, so and .
Assume Statement 1 alone. Since , then, by substitution, .
Assume Statement 2 alone. Since , it follows that , and again by substitution, .
Example Question #7 : Dsq: Calculating The Length Of The Side Of An Equilateral Triangle
You are given two equilateral triangles and .
Which, if either, is greater, or ?
Statement 1: The perimeters of and are equal.
Statement 2: The areas of and are equal.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone, and let be the common perimeter of the triangles. Since an equilateral triangle has three sides of equal length, and , so .
Assume Statement 2 alone, and let be the common area of the triangles. Using the area formula for an equilateral triangle, we can note that:
and ,
so
.
Example Question #11 : Dsq: Calculating The Length Of The Side Of An Equilateral Triangle
Given equilateral triangle and right triangle , which, if either, is longer, or ?
Statement 1:
Statement 2:
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone. Since all three sides of are congruent - specifically, - and , it follows by transitivity that . However, no information is given as to whether has length greater than, equal to, or less than , so it cannot be determined which of and , if either, is the longer. By a similar argument, Statement 2 yields insufficient information.
Now assume both statements are true. and are each congruent to one of the congruent sides of equilateral and are therefore congruent to each other. However, the hypotenuse of a right triangle must be longer than both legs, so the hypotenuse of is . is also longer than any segment congruent to one of the legs, which includes all three sides of - specificially, is longer than .
Example Question #12 : Equilateral Triangles
is equilateral. may or may not be equilateral.
which, if either, is longer, or ?
Statement 1:
Statement 2: and
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Assume Statement 1 alone. is equilateral, so . Also, by the Triangle Inequality, the sum of the lengths of two sides of a triangle must exceed the third, so . From Statement 1, , so by substitution, , and .
Statement 2 alone provides insufficient information. For example, assume is an equilateral triangle with sidelength 9. If is an equilateral triangle with sidelength 8, the conditions of the statement hold, and . However, if is a right triangle in which , , and , the conditions of the statement still hold, but .
Example Question #13 : Equilateral Triangles
Given equilateral triangles and , which, if either, is longer, or ?
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
All sides of an equilateral triangle have the same measure, so we can let be the common sidelength of , and be that of .
Statement 1 can be rewritten as ; Statement 2 can be rewritten as . The equivalent question is whether we can determine which, if either, is greater, or . The two statements together are insufficient to answer the question, however; 5 and 10 have sum 15 and product 50, but we cannot determine without further information whether and , or vice versa. Therefore, we do not know for sure whether a side of is longer than a side of - specifically, which of or is longer.
Example Question #12 : Dsq: Calculating The Length Of The Side Of An Equilateral Triangle
Given equilateral triangles and , which, if either, is longer, or ?
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
All sides of an equilateral triangle have the same measure, so we can let be the common sidelength of , and be that of .
Statement 1 can be rewritten as ; Statement 2 can be rewritten as . The equivalent question is whether we can determine which, if either, is greater, or .
Statement 1 alone yields insufficient information; for example, the two numbers added together could be 10 and 14, but it is impossible to determine whether or is the greater of the two. Statement 2 alone is also insufficient, for a similar reason; for example, the two numbers could be 9 and 16, but again, either or could be the greater.
Now assume both statements. The only two numbers that can be added to yield a sum of 24 and multiplied to yield a product of 144 are 12 and 12; therefore, , and and have the same sidelengths. Specifically, and have the same length.
Example Question #1 : Dsq: Calculating The Area Of An Equilateral Triangle
What is the area of ?
(1) The height is 5.
(2) The base is 4.
Statement 1 alone is sufficient
Each statement alone is sufficient
Statement 2 alone is sufficient
Both statements taken together are sufficient
Statements 1 and 2 together are not sufficient
Both statements taken together are sufficient
To find an area of a triangle we need the length of the height and the length of the corresponding basis.
Each statement 1 and 2 alone is not sufficient, since we don't know whether the triangle is equilateral. Indeed, we need to take both statements to be able to calculate the area.
Hence, both statements together are sufficient.
Example Question #1 : Dsq: Calculating The Area Of An Equilateral Triangle
is an equilateral triangle inscribed in the circle. What is the area of triangle ?
(1) The area of the circle is .
(2) The area of the circle minus the area of the triangle is .
Statement 1 alone is sufficient.
Statement 2 alone is sufficient.
Each statement alone is sufficient.
Statements 1 and 2 taken together are sufficient.
Both statements together are sufficient.
Statement 1 alone is sufficient.
To answer this question, we should be able to have information about any lengths in the circle or in the triangle, or also about the areas of the different regions.
Statement 1 alone is sufficient, since from the area of the circle we can find the length of the radius, which allows us to calculate the length of the height of the equilateral triangle. This would allow us to find the length of a side, giving us all the necessary information to calculate the area of the equilateral triangle.
Statement 2, although giving us information about the difference of the circle and the triangle, we cannot conclude anything because we don't know the proportions of the respective geometric figures. Therefore statement 2 is insufficient.
To conclude, statement one alone is sufficient.
Example Question #3 : Dsq: Calculating The Area Of An Equilateral Triangle
Consider .
I) .
II) Side light years long.
What is the area of ?
Neither statement is sufficient to answer the question. More information is needed.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Either statement is sufficient to answer the question.
Both statements are needed to answer the question.
Both statements are needed to answer the question.
To find the area of a triangle, we need the base and the height. Taking both statements together we can solve this problem.
I) tells us that OHT is an equilateral triangle.
II) gives us one side length. Which means we really know all the side lengths.
We can use either Pythagorean Theorem or 30/60/90 triangle ratios to find the height of OHT.
From there we can find the area.
Thus, both are needed. I) Tells us we have an equilateral, II) Lets us find the height. Both allow us to find the area.
Example Question #3 : Dsq: Calculating The Area Of An Equilateral Triangle
Given an equilateral triangle and Square , which, if either, has the greater area?
Statement 1: and are located on the same circle.
Statement 2: Each diagonal of Square has length times the height of .
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone. Since the vertices of both the triangle and the square are on the same circle, then the same circle is circumscribed about both polygons. For the sake of simplicity, we will assume the radius of that circle to be 1 (and the diameter to be 2); this argument will work regardless of the size of the circle.
A diagonal of a square doubles as a diameter of the circumscribed circle, so each diagonal of Square is 2; since a Square is a rhombus, the area is one half the product of the lengths of the diagonals, or .
Now examine the figure below, which shows , its altitudes, and its circumscribed circle:
The three altitudes of an equilateral triangle meet at the center of the circumscribed circle, or circumcenter, so ; they also divide one another into segments such that one has twice the length of the other, so . Therefore, . Also, the six smaller triangles are all 30-60-90 by symmetry, so by the 30-60-90 Theorem, , and .
Therefore, the area of the triangle is
,
which can be shown to be less than the square's area of 2.
Assume Statement 2 alone. Again, for simplicity's sake, we will use , so we can keep the area of the equilateral triangle as before, ; this argument works regardless of the dimensions. The length of a diagonal of the square will as before be , and its area will again be 2.