GMAT Math : Calculating the area of a quadrilateral

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Quadrilaterals

Parallelogram2

Give the area of the above parallelogram if .

Possible Answers:

Correct answer:

Explanation:

Multiply height  by base  to get the area.

By the 30-60-90 Theorem:

The area is therefore

Example Question #92 : Quadrilaterals

Triangle

Note: Figure NOT drawn to scale.

Refer to the above diagram. Give the area of Quadrilateral .

Possible Answers:

The correct answer is not among the other choices.

Correct answer:

Explanation:

Apply the Pythagorean Theorem twice here.

The quadrilateral is a composite of two right triangles, each of whose area is half the product of its legs:

Area of 

Area of 

Add: 

Example Question #11 : Calculating The Area Of A Quadrilateral

Rhombus_1

The above figure shows a rhombus . Give its area.

Possible Answers:

Correct answer:

Explanation:

Construct the other diagonal of the rhombus, which, along with the first one, form a pair of mutual perpendicular bisectors.

Rhombus_1

By the Pythagorean Theorem, 

The rhombus can be seen as the composite of four congruent right triangles, each with legs 10 and , so the area of the rhombus is 

.

Example Question #12 : Calculating The Area Of A Quadrilateral

Rhombus  has perimeter 48; . What is the area of Rhombus  ?

Possible Answers:

Correct answer:

Explanation:

Each side of a rhombus is congruent, so if it has perimeter 48, it has sidelength 12. Also, the diagonals of a rhombus are each other's perpendicular bisectors, so if they are both constructed, and their point of intersection is called , then . The following figure is formed by the rhombus and its diagonals.

Untitled

 is a right triangle with its short leg half the length of its hypotenuse, so it is a 30-60-90 triangle, and its long leg measures  by the 30-60-90 Theorem. Therefore, . The area of a rhombus is half the product of the lengths of its diagonals:

 

Example Question #14 : Other Quadrilaterals

Trapezoid 2

Note: figure NOT drawn to scale.

Give the area of the above trapezoid.

Possible Answers:

Correct answer:

Explanation:

The area of a trapezoid with height  and bases of length  and  is

.

Setting :

Example Question #15 : Other Quadrilaterals

Trapezoid 1

Note: figure NOT drawn to scale.

Give the area of the above trapezoid.

Possible Answers:

Correct answer:

Explanation:

The area of a trapezoid with height  and bases of length  and  is

.

Setting :

Example Question #16 : Other Quadrilaterals

Rhombus

Note: figure NOT drawn to scale.

The above figure depicts a rhombus, .

Give the area of Rhombus .

Possible Answers:

Correct answer:

Explanation:

The area of a rhombus is half the product of the lengths of its diagonals, so

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors