GMAT Math : Functions/Series

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Functions/Series

Consider the function \displaystyle f(x) = x^{3} - 2.

State whether this function is even, odd, or neither, and give the reason for your answer.

Possible Answers:

\displaystyle f is even because it is a polynomial of degree 3.

\displaystyle f is not odd, because there exists at least one value of \displaystyle x for which \displaystyle f(-x) \neq -f(x) ; \displaystyle f is not even, because there exists at least one value of \displaystyle x for which \displaystyle f(-x) \neq f(x).

\displaystyle f is odd because \displaystyle f(-x) = -f(x) for each value of \displaystyle x in the domain.

\displaystyle f is odd because it is a polynomial of degree 3.

\displaystyle f is even because \displaystyle f(-x) = f(x) for each value of \displaystyle x in the domain.

Correct answer:

\displaystyle f is not odd, because there exists at least one value of \displaystyle x for which \displaystyle f(-x) \neq -f(x) ; \displaystyle f is not even, because there exists at least one value of \displaystyle x for which \displaystyle f(-x) \neq f(x).

Explanation:

A function is odd if and only if \displaystyle f(-x) = -f(x) for each value of \displaystyle x in the domain; it is even if and only if \displaystyle f(-x) = f(x) for each value of \displaystyle x in the domain. To disprove a function is odd or even, we need only find one value of \displaystyle x for which the appropriate statement fails to hold. 

Consider \displaystyle x = 1:

\displaystyle f(x) = x^{3} - 2

\displaystyle f(1) = 1^{3} - 2 = 1-2 = -1

 

\displaystyle f(x) = x^{3} - 2

\displaystyle f(-1) = (-1)^{3} - 2 = -1 -2 = -3

 

\displaystyle f(-1 ) \neq - f(1), so \displaystyle f is not an odd function; \displaystyle f(-1 ) \neq f(1), so \displaystyle f is not an even function.

 

 

Example Question #52 : Functions/Series

\displaystyle f (x) = \left\{\begin{matrix} 1\textrm{ if } x< 0\\ x \textrm{ if } x \geq 0 \end{matrix}\right. 

\displaystyle g (x) = \left\{\begin{matrix} 2x-5 \textrm{ if } x< 0\\ 2\; \; \; \; \; \; \; \; \textrm{ if } x \geq 0 \end{matrix}\right..

Evaluate \displaystyle (f \circ g) (-4).

Possible Answers:

\displaystyle 2

\displaystyle -3

\displaystyle -13

\displaystyle 52

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

\displaystyle (f \circ g) (-4) = f (g(-4))

First we evaluate \displaystyle g (-4). Since the parameter is negative, we use the first half of the definition of \displaystyle g:

\displaystyle g (x) = 2x-5

\displaystyle g (-4) = 2 \left ( -4\right )-5 = -8 - 5 = -13

\displaystyle f (g(-4)) = f(-13); since the parameter here is again negative, we use the first half of the definition of \displaystyle f:

\displaystyle f(-13) = 1

Therefore, \displaystyle (f \circ g) (-4) = 1.

Example Question #53 : Functions/Series

\displaystyle \left \lfloor N \right \rfloor is defined to be the greatest integer less than or equal to \displaystyle N.

Define  \displaystyle f (x) = \left \lfloor x ^{2} \right \rfloor - \left \lfloor 4 x \right \rfloor + 8.

Evaluate \displaystyle f \left ( \frac{3}{5} \right ).

Possible Answers:

\displaystyle f \left ( \frac{3}{5} \right ) = 5

\displaystyle f \left ( \frac{3}{5} \right ) = 9

\displaystyle f \left ( \frac{3}{5} \right ) = 8

\displaystyle f \left ( \frac{3}{5} \right ) = 7

\displaystyle f \left ( \frac{3}{5} \right ) = 6

Correct answer:

\displaystyle f \left ( \frac{3}{5} \right ) = 6

Explanation:

\displaystyle f (x) = \left \lfloor x ^{2} \right \rfloor - \left \lfloor 4 x \right \rfloor + 8

\displaystyle f \left ( \frac{3}{5} \right ) = \left \lfloor \left (\frac{3}{5} \right ) ^{2} \right \rfloor - \left \lfloor 4 \cdot \frac{3}{5}\right \rfloor + 8

\displaystyle = \left \lfloor \frac{9}{25} \right \rfloor - \left \lfloor \frac{12}{5}\right \rfloor + 8

\displaystyle = \left \lfloor \frac{9}{25} \right \rfloor - \left \lfloor 2 \frac{2}{5}\right \rfloor + 8

\displaystyle =0 - 2 + 8 = 6

 

Example Question #191 : Algebra

If \displaystyle f(x)=x^{2}-\sqrt{x} and \displaystyle g(x)=3x-2, what is \displaystyle f(g(2))?

Possible Answers:

\displaystyle 6

\displaystyle 10-3\sqrt{2}

\displaystyle 12

\displaystyle 9-\sqrt{3}

\displaystyle 14

Correct answer:

\displaystyle 14

Explanation:

We start by finding g(2):

\displaystyle g(2)=3\cdot2-2 = 6-2 = 4

Then we find f(g(2)) which is f(4): 

\displaystyle f(4)=4^{2}-\sqrt{4}=16-2=14

Example Question #55 : Functions/Series

Define two real-valued functions as follows:

\displaystyle p (x)= x^{2}

\displaystyle q(x )= \left\{\begin{matrix} x+1 & x< 0\\ x-1 & x \ge 0 \end{matrix}\right.

Determine \displaystyle \left ( q \circ p\right )(x).

Possible Answers:

\displaystyle \left ( q \circ p\right )(x)= x^{2}- 1

\displaystyle \left ( q \circ p\right )(x)= x^{2}-2x + 1

\displaystyle \left ( q \circ p\right )(x) = \left\{\begin{matrix} x^{2}+2x + 1 & x < 0\\ x^{2}-2x + 1&x \ge 0 \end{matrix}\right.

\displaystyle \left ( q \circ p\right )(x)= x^{2}+1

\displaystyle \left ( q \circ p\right )(x) = \left\{\begin{matrix} x^{2}+ 1 & x < 0\\ x^{2}- 1&x \ge 0 \end{matrix}\right.

Correct answer:

\displaystyle \left ( q \circ p\right )(x)= x^{2}- 1

Explanation:

\displaystyle \left ( q \circ p\right )(x) = q(p(x))= q(x^{2}) by definition. \displaystyle q is piecewise defined, with one defintion for negative values of the domain and one for nonnegative values. However, \displaystyle p(x)= x^{2} is nonnegative for all real numbers, so the defintion for nonnegative numbers, \displaystyle q(x )= x-1, is the one that will always be used. Therefore,

\displaystyle \left ( q \circ p\right )(x) = q(p(x))= q(x^{2}) = x^{2}-1 for all values of \displaystyle x.

Example Question #54 : Functions/Series

Define two real-valued functions as follows:

\displaystyle p (x)= 9 - x^{2}

\displaystyle q(x )= \left\{\begin{matrix} 0 & x< 0\\ x & x \ge 0 \end{matrix}\right.

Determine \displaystyle \left ( q \circ p\right )(x).

Possible Answers:

\displaystyle \left ( q \circ p\right )(x) = \left\{\begin{matrix} 9 - x^{2}& x < -3 \\ 0& -3 \le x \le 3 \\ 9 - x^{2}& x > 3 \end{matrix}\right.

\displaystyle \left ( q \circ p\right )(x) = \left\{\begin{matrix} 0& x < -3 \\ 9 - x^{2}& -3 \le x \le 3 \\ 0& x > 3 \end{matrix}\right.

\displaystyle \left ( q \circ p\right )(x) = \left\{\begin{matrix} 9 & x< 0\\ 9-x^{2} &x \ge 0 \end{matrix}\right.

\displaystyle \left ( q \circ p\right )(x) = 9 - x^{2}

\displaystyle \left ( q \circ p\right )(x) =0

Correct answer:

\displaystyle \left ( q \circ p\right )(x) = \left\{\begin{matrix} 0& x < -3 \\ 9 - x^{2}& -3 \le x \le 3 \\ 0& x > 3 \end{matrix}\right.

Explanation:

\displaystyle \left ( q \circ p\right )(x) = q(p(x))= q( 9 - x^{2}) by definition.

 \displaystyle q is piecewise defined, with one defintion for negative values of the domain and one for nonnegative values. 

If \displaystyle 9 -x^{2} < 0, then we use the definition \displaystyle q(x)= 0. This happens if

\displaystyle 9 -x^{2} < 0

\displaystyle 9 < x^{2}

\displaystyle x > 3 or \displaystyle x < -3

Therefore, the defintion of  \displaystyle \left ( q \circ p\right )(x) for \displaystyle x > 3 or \displaystyle x < -3 is

\displaystyle \left ( q \circ p\right )(x) = 0

 

Subsquently, if \displaystyle -3 \le x \le 3, we use the defintion \displaystyle q(x) = x, since \displaystyle 9 - x^{2} \ge 0:

\displaystyle \left ( q \circ p\right )(x) =q( 9 - x^{2}) = 9 -x^{2}.

The correct choice is

\displaystyle \left ( q \circ p\right )(x) = \left\{\begin{matrix} 0& x < -3 \\ 9 - x^{2}& -3 \le x \le 3 \\ 0& x > 3 \end{matrix}\right.

Example Question #53 : Understanding Functions

Define a function \displaystyle f on the real numbers as follows:

\displaystyle f(x) = x +4\sqrt{x}- 6

Give the range of the function.

Possible Answers:

\displaystyle \left [ 0, \infty \right )

\displaystyle \left [ 2, \infty \right )

\displaystyle \left [ -10, \infty \right )

\displaystyle \left [ 4, \infty \right )

\displaystyle \left [ -6, \infty \right )

Correct answer:

\displaystyle \left [ -6, \infty \right )

Explanation:

This can be understood better by substituting \displaystyle t = \sqrt{x}, and, subsequently, \displaystyle t^{2} =\left ( \sqrt{x} \right )^{2} = x in the function's definition.

\displaystyle x + 4 \sqrt{x}- 6 = t^{2} +4 t - 6

which is now in standard quadratic form in terms of \displaystyle t.

Write this in vertex form by completing the square:

\displaystyle t^{2} +4 t - 6 = t^{2}+4 t + \left ( \frac{4}{2} \right ) ^{2} - 6 - \left ( \frac{4}{2} \right ) ^{2}

\displaystyle = t^{2}+4 t +4- 6 - 4

\displaystyle =\left ( t+2 \right )^{2}- 10

Substitute \displaystyle \sqrt{x} back for \displaystyle t, and the original function can be rewritten as

\displaystyle f(x)=\left ( \sqrt{x}+2 \right )^{2}- 10.

 

To find the range, note that \displaystyle \sqrt{x} \ge 0. Therefore, 

\displaystyle \sqrt{x} + 2 \ge 2

\displaystyle \left ( \sqrt{x}+2 \right )^{2} \ge 4

and 

\displaystyle f(x)=\left ( \sqrt{x}+2 \right )^{2}- 10 \ge -6

The range of \displaystyle f is the set \displaystyle \left [ -6, \infty \right ).

Example Question #58 : Functions/Series

Define a function \displaystyle f on the real numbers as follows:

\displaystyle f(x) = x^{\frac{2}{3}} + 6x^{\frac{1}{3}}+6

Give the range of the function.

Possible Answers:

\displaystyle (-\infty, \infty)

\displaystyle [-27, \infty)

\displaystyle [6, \infty)

\displaystyle [-3, \infty)

\displaystyle [ 3, \infty)

Correct answer:

\displaystyle [-3, \infty)

Explanation:

This can be understood better by substituting \displaystyle t = x^{\frac{1}{3}}, and, subsequently, \displaystyle t^{2} =\left ( x^{\frac{1}{3}} \right )^{2} = x^{\frac{2}{3}} in the function's definition.

\displaystyle x^{\frac{2}{3}} + 6x^{\frac{1}{3}}+6 = t^{2}+ 6t + 6

which is now in standard quadratic form in terms of \displaystyle t.

Write this in vertex form by completing the square:

\displaystyle t^{2}+ 6t + 6

\displaystyle = t^{2}+ 6t +\left ( \frac{6}{2} \right )^{2}+ 6 - \left ( \frac{6}{2} \right )^{2}

\displaystyle = t^{2}+ 6t +9+ 6 - 9

\displaystyle = (t+3)^{2} - 3

Substitute \displaystyle x^{\frac{1}{3}} back for \displaystyle t. The original function can be rewritten as

\displaystyle f(x)= (x^{\frac{1}{3}}+3)^{2} - 3

or, in radical form,

\displaystyle f(x)= (\sqrt[3]{x }+3)^{2} - 3

\displaystyle \sqrt[3]{x} can assume any real value; so, subsequently, can \displaystyle \sqrt[3]{x} + 3. But its square must be nonnegative, so

\displaystyle \left (\sqrt[3]{x} + 3 \right )^{2} \ge 0

and 

\displaystyle f(x)= (\sqrt[3]{x }+3)^{2} - 3 \ge -3

The range of \displaystyle f is \displaystyle [-3, \infty)

 

Example Question #51 : Functions/Series

If the functions \displaystyle f(x)=2x^2+a and \displaystyle g(x) =-x^2-b intersect only when \displaystyle x=1, and that \displaystyle f(g(0)) =1, and \displaystyle b>0, what is \displaystyle b?

Possible Answers:

\displaystyle \frac{1}{8}(1-\sqrt{33})

\displaystyle \frac{1}{4}(1+\sqrt{33})

\displaystyle \frac{1}{8}(3+\sqrt{99})

\displaystyle \frac{1}{8}

None of the other answers.

Correct answer:

\displaystyle \frac{1}{4}(1+\sqrt{33})

Explanation:

In order to find exactly the \displaystyle a,b values where the equations intersect and when \displaystyle f(g(0))=1. We need to consider each piece of information seperately.

 

Let's start with \displaystyle f(g(0))=1. Plugging \displaystyle g into \displaystyle f, we have \displaystyle f(g(x)) = 2(-x^2-b)^2+a. Plugging 0 into this, we have\displaystyle f(g(0))=2b^2+a. This in turn equals 1, because we were given that piece of information in the beginning. So we end up with \displaystyle 2b^2+a=1

 

Now let's shift our attention to "intersect only when \displaystyle x=1" That means, if we plug 1 into both equations, we can set them equal to each other.

\displaystyle 2(1)^2+a=-(1)^2-b becomes \displaystyle 2+a = -1-b becomes \displaystyle a+b= -3.

 

Now we have two different equations arising from the two previous paragraphs.

\displaystyle a+b = -3

\displaystyle a+2b^2=1

We can solve this system of equations using the substitution method.

Solving for \displaystyle a in the first equation gives \displaystyle a=-3-b.

Plugging this equation in for \displaystyle a the 2nd equation gives \displaystyle (-3-b) +2b^2 =1. Using algebra on this equation we get \displaystyle 2b^2-b-4=0

Now we are ready to use the quadratic formula to solve for \displaystyle b.

 

\displaystyle b = \frac{1\pm \sqrt{1^2-(4)(2)(-4)}}{2(2)}=\frac{1}{4}(1\pm \sqrt{33})

Finally, since we're told in the beginning that \displaystyle b>0, we must pick the plus sign in our solution for \displaystyle b. Hence

\displaystyle b =\frac{1}{4}(1+ \sqrt{33}).

 

Example Question #55 : Understanding Functions

Define two real-valued functions as follows:

\displaystyle f(x) = x^{2} - 6

\displaystyle g(x)= \frac{1}{2x}

Determine \displaystyle \left ( f \circ g\right )(x).

Possible Answers:

\displaystyle \left ( f \circ g\right )(x) = \frac{1}{2x^{2}-12}

\displaystyle \left ( f \circ g\right )(x)= 2x^{3}- 12x

\displaystyle \left ( f \circ g\right )(x)= \frac{1 - 24x^{2}}{4x^{2}}

\displaystyle \left ( f \circ g\right )(x)= \frac{x^{2} - 6}{2x}

The correct answer is not given among the other responses.

Correct answer:

\displaystyle \left ( f \circ g\right )(x)= \frac{1 - 24x^{2}}{4x^{2}}

Explanation:

This question is asking us to find the composition of f and g. In order to do this we need to plug g(x) into the x value in f(x).

\displaystyle \left ( f \circ g\right )(x)

\displaystyle = f(g(x))

\displaystyle = f \left ( \frac{1}{2x} \right )

\displaystyle = \left ( \frac{1}{2x} \right )^{2} - 6

\displaystyle = \frac{1}{4x^{2}} - 6

\displaystyle = \frac{1}{4x^{2}} - \frac{24x^{2}}{4x^{2}}

\displaystyle = \frac{1 - 24x^{2}}{4x^{2}}

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors