GMAT Math : Equations

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Solving Equations

Solve for \displaystyle x:

\displaystyle 4 (x +8) + 13 = 6 (x + 9) - x

Possible Answers:

The equation has no solution.

\displaystyle x = -9

\displaystyle x = -4 \frac{1}{2}

\displaystyle x = 4 \frac{1}{2}

\displaystyle x=9

Correct answer:

\displaystyle x = -9

Explanation:

\displaystyle 4 (x +8) + 13 = 6 (x + 9) - x

\displaystyle 4 \cdot x +4 \cdot 8 + 13 = 6 \cdot x + 6 \cdot 9 - x

\displaystyle 4 x +32 + 13 = 6x + 54 - x

\displaystyle 4 x +45 = 5x + 54

\displaystyle 4 x +45 -4x -54 = 5x + 54 -4x -54

\displaystyle -9 = x

Example Question #12 : Solving Equations

Give all real solutions of the following equation:

\displaystyle x^{4} - 10x^{2} + 9 = 0

Possible Answers:

\displaystyle \left \{ 1, 3\right \}

The equation has no solution.

\displaystyle \left \{1, 9\right \}

\displaystyle \left \{ -9, -1, 1, 9\right \}

\displaystyle \left \{ -3, -1, 1, 3\right \}

Correct answer:

\displaystyle \left \{ -3, -1, 1, 3\right \}

Explanation:

By substituting \displaystyle u = x^{2} and, subsequently, \displaystyle u^{2} =\left ( x^{2} \right )^{2} = x^{4}, this equation be rewritten as a quadratic equation, and solved as such:

\displaystyle x^{4} - 10x^{2} + 9 = 0

\displaystyle u^{2} - 10u + 9 = 0

We are looking to factor the quadratic expression as \displaystyle (u+?)(u+?), replacing the two question marks with integers with a product of  9 and a sum of \displaystyle -10; these integers are \displaystyle -9,-1.

\displaystyle (u-9)(u-1) = 0

Substitute back:

\displaystyle (x^{2}-9)(x^{2}-1) = 0

These factors can themselves be factored as the difference of squares:

\displaystyle (x+3)(x-3)(x+1)(x-1) = 0

Set each factor to zero and solve:

\displaystyle x-3 = 0 \Rightarrow x = 3

\displaystyle x-1 = 0 \Rightarrow x = 1

\displaystyle x+1 = 0 \Rightarrow x = - 1

\displaystyle x+3 = 0 \Rightarrow x = - 3

The solution set is \displaystyle \left \{ -3, -1, 1, 3\right \}.

Example Question #1403 : Problem Solving Questions

Solve for \displaystyle x:

\displaystyle x - 7 \sqrt{x} + 12 = 0

Possible Answers:

\displaystyle x = \sqrt{3} \textrm{ or } x = 2

\displaystyle x = 9 \textrm{ or } x = -9

\displaystyle x = 3 \textrm{ or } x = 4

The equation has no solution.

\displaystyle x = 9 \textrm{ or } x = 16

Correct answer:

\displaystyle x = 9 \textrm{ or } x = 16

Explanation:

Substitute \displaystyle u = \sqrt{x}, and, subsequently, \displaystyle u^{2} = x, to rewrite this equation as quadratic, then solve by factoring.

\displaystyle x - 7 \sqrt{x} + 12 = 0

\displaystyle u^{2} - 7 u + 12 = 0

We can rewrite the quadratic expression as \displaystyle (x + ?) (x + ?), where the question marks are replaced with integers whose product is 12 and whose sum is \displaystyle -7; these integers are \displaystyle -3\ and -4.

\displaystyle (u-3) (u-4)= 0

Set each factor to zero and solve for \displaystyle u; then substitute back and solve for \displaystyle x:

 

\displaystyle u-3 = 0

\displaystyle u=3

\displaystyle \sqrt{x} =3

\displaystyle x = 9

 

\displaystyle u-4 = 0

\displaystyle u=4

\displaystyle \sqrt{x} =4

\displaystyle x = 16

 

The solution set, which can be confirmed by substitution, is \displaystyle \left \{ 9,16\right \}.

Example Question #11 : Equations

Find all real solutions to the following equation:

\displaystyle \frac{1}{x^{2}} - \frac{8}{x} +12 = 0

Possible Answers:

\displaystyle x = -6 \textrm{ or } x = -2

\displaystyle x = 2 \textrm{ or } x = 6

The equation has no solution.

\displaystyle x = \frac{1}{6} \textrm{ or } x = \frac{1}{2}

\displaystyle x = - \frac{1}{2} \textrm{ or } x = - \frac{1}{6}

Correct answer:

\displaystyle x = \frac{1}{6} \textrm{ or } x = \frac{1}{2}

Explanation:

This can be best solved by substituting \displaystyle u = \frac{1}{x} , and, subsequently, \displaystyle u ^{2}=\left ( \frac{1}{x} \right ) ^{2} =\frac{1}{x ^{2}}, then solving the resulting quadratic equation.

\displaystyle \frac{1}{x^{2}} - \frac{8}{x} + 12 = 0

\displaystyle \frac{1}{x^{2}} - 8 \cdot \frac{1}{x} + 12 = 0

\displaystyle u^{2} - 8u + 12 = 0

Factor the expression on the left by finding two integers whose product is 12 and whose sum is \displaystyle -8:

\displaystyle (u-6)(u-2) = 0

Set each linear binomial factor to 0, solve separately for \displaystyle u, and substitute back:

\displaystyle u-6 = 0

\displaystyle u=6

\displaystyle \frac{1}{x} = 6

\displaystyle x = \frac{1}{6}

or

\displaystyle u-2 = 0

\displaystyle u=2

\displaystyle \frac{1}{x} = 2

\displaystyle x = \frac{1}{2}

Example Question #12 : Equations

The period of a pendulum - that is, the time it takes for the pendulum to swing once and back - varies directly as the square root of its length. 

The pendulum of a giant clock is 18 meters long and has period 8.5 seconds. If the pendulum is lengthened to 21 meters, what will its period be, to the nearest tenth of a second?

Possible Answers:

\displaystyle 11.6 \textrm{ sec}

\displaystyle 10.4 \textrm{ sec}

\displaystyle 9.2 \textrm{ sec}

\displaystyle 7.9 \textrm{ sec}

\displaystyle 11.2 \textrm{ sec}

Correct answer:

\displaystyle 9.2 \textrm{ sec}

Explanation:

The variation equation for this situation is 

\displaystyle \frac{P_{1}}{\sqrt{L_{1}}} = \frac{P_{2}}{\sqrt{L}_{2}}

Set \displaystyle P_{1} = 8.5 , L_{1} = 18, {L}_{2}= 21, and solve for \displaystyle P_{2};

\displaystyle \frac{8.5}{\sqrt{18}} = \frac{P_{2}}{\sqrt{21}}

\displaystyle \frac{8.5}{\sqrt{18}} \cdot{\sqrt{21}} = \frac{P_{2}}{\sqrt{21}} \cdot{\sqrt{21}}

\displaystyle P_{2} = \frac{8.5}{\sqrt{18}} \cdot{\sqrt{21}} \approx 9.2 \textrm{ sec}

Example Question #322 : Algebra

\displaystyle x = 8^{N}

Which of these expressions is equal to \displaystyle \log_{32} x ?

Possible Answers:

\displaystyle \sqrt[5]{N^{3}}

\displaystyle \frac{3}{5} N

\displaystyle \frac{5}{3} N

\displaystyle \ln \frac{5}{3}N

\displaystyle N\sqrt[3]{N^{2}}

Correct answer:

\displaystyle \frac{3}{5} N

Explanation:

\displaystyle 2^{5} = 32

\displaystyle 2 = \sqrt[5]{32}

\displaystyle 8 = 2^{3} = \left ( \sqrt[5]{32} \right ) ^{3} = 32^{ \frac{3}{5} }

\displaystyle \log_{32} x =\log_{32}32^{ \frac{3}{5} N } = \frac{3}{5} N

Example Question #325 : Algebra

Solve for \displaystyle x:

\displaystyle | 4x - 18 | - 18 = 57

Possible Answers:

\displaystyle x=23.25

\displaystyle x= -14.25 \textrm{ or }x=23.25

\displaystyle x= -14.25 \textrm{ or }x=14.25

\displaystyle x= -14.25

\displaystyle x= -23.25 \textrm{ or }x=23.25

Correct answer:

\displaystyle x= -14.25 \textrm{ or }x=23.25

Explanation:

First, isolate the absolute value expression on one side:

\displaystyle | 4x - 18 | - 18 = 57

\displaystyle | 4x - 18 | -18+ 18 = 57+18

\displaystyle | 4x - 18 | = 75

Rewrite as a compound sentence:

\displaystyle 4x - 18 = - 75 \textrm{ or } 4x - 18 = 75

Solve each separately:

\displaystyle 4x - 18 = - 75

\displaystyle 4x - 18+18 = -75+18

\displaystyle 4x= - 57

\displaystyle 4x \div 4= - 57 \div 4

\displaystyle x= - 14.25

or

\displaystyle 4x - 18 = 75

\displaystyle 4x - 18+18 = 75+18

\displaystyle 4x= 93

\displaystyle 4x \div 4=93 \div 4

\displaystyle x = 23.25

The solution set is \displaystyle \left \{ -14.25, 23.25 \right \}

Example Question #331 : Algebra

Solve for \displaystyle x:

\displaystyle | 4x - 18 | + 18 = 57

Possible Answers:

\displaystyle x=-5.25 \textrm{ or }x=14.25

\displaystyle x=-14.25\textrm{ or }x=14.25

\displaystyle x=-5.25 \textrm{ or }x=5.25

\displaystyle x=14.25

\displaystyle x=-14.25

Correct answer:

\displaystyle x=-5.25 \textrm{ or }x=14.25

Explanation:

First, isolate the absolute value expression on one side:

\displaystyle | 4x - 18 | + 18 = 57

\displaystyle | 4x - 18 | + 18 -18 = 57-18

\displaystyle | 4x - 18 | = 39

Rewrite as a compound sentence:

\displaystyle 4x - 18 = - 39 \textrm{ or } 4x - 18 = 39

Solve each separately:

\displaystyle 4x - 18 = - 39

\displaystyle 4x - 18+18 = - 39+18

\displaystyle 4x= - 21

\displaystyle 4x \div 4= - 21 \div 4

\displaystyle x= - 5.25

or

\displaystyle 4x - 18 = 39

\displaystyle 4x - 18+18 = 39+18

\displaystyle 4x= 57

\displaystyle 4x \div 4=57 \div 4

\displaystyle x = 14.25

The solution set is \displaystyle \left \{ -5.25, 14.25\right \}.

Example Question #1415 : Gmat Quantitative Reasoning

Give the solution set of the equation:

\displaystyle \left | x ^{2} - 2x \right | = 3x -6

Possible Answers:

\displaystyle x \in \left \{ -3, 3\right \}

The equation has no solution.

\displaystyle x \in \left \{ -3, 2\right \}

\displaystyle x \in \left \{ 2, 3\right \}

\displaystyle x \in \left \{ -3, 2, 3\right \}

Correct answer:

\displaystyle x \in \left \{ 2, 3\right \}

Explanation:

Write this as a compound equation and solve each separately.

\displaystyle \left | x ^{2} - 2x \right | = 3x -6

\displaystyle x ^{2} - 2x = 3x -6 \textrm{ or }x ^{2} - 2x = -\left ( 3x -6 \right )

 

\displaystyle x ^{2} - 2x = 3x -6

\displaystyle x ^{2} - 2x - 3x + 6 = 3x -6 - 3x + 6

\displaystyle x ^{2} - 5x + 6 =0

\displaystyle (x-3) (x-2) =0

\displaystyle x - 3 = 0 \Rightarrow x = 3

\displaystyle x - 2 = 0 \Rightarrow x =2

 

\displaystyle x ^{2} - 2x = -\left ( 3x -6 \right )

\displaystyle x ^{2} - 2x = -3x +6

\displaystyle x ^{2} - 2x+ 3x - 6= -3x +6 + 3x - 6

\displaystyle x ^{2} +x - 6= 0

\displaystyle (x + 3) (x - 2)= 0

\displaystyle x + 3 = 0 \Rightarrow x = -3

\displaystyle x - 2 = 0 \Rightarrow x =2

 

This gives us three possible solutions - \displaystyle \left \{ -3, 2, 3\right \}. We check all three.

 

\displaystyle x = -3

\displaystyle \left | x ^{2} - 2x \right | = 3x -6

\displaystyle \left | \left ( -3\right ) ^{2} - 2 (-3) \right | = 3 (-3) -6

\displaystyle 15 = -15

This is a false statement so we can eliminate \displaystyle -3 as a false "solution".

 

\displaystyle x = 2

\displaystyle \left | x ^{2} - 2x \right | = 3x -6

\displaystyle \left |2^{2} - 2 \cdot 2 \right | = 2 \cdot 3 -6

\displaystyle |0| = 0

\displaystyle 0=0

2 is a solution.

 

\displaystyle x = 3

\displaystyle \left | x ^{2} - 2x \right | = 3x -6

\displaystyle \left | 3 ^{2} - 2 \cdot 3 \right | = 3 \cdot 3 -6

\displaystyle 3= 3

3 is a solution.

 

The solution set is \displaystyle x \in \left \{ 2, 3\right \}.

Example Question #12 : Equations

Solve for \displaystyle x:

\displaystyle 4 ^{5x - 7} = 8 ^{2x -1}

Possible Answers:

\displaystyle x = 4.25

\displaystyle x = 0.6875

\displaystyle x = -1.0625

The equation has no solution

\displaystyle x = 2.75

Correct answer:

\displaystyle x = 2.75

Explanation:

Since \displaystyle 2 ^{2} = 4 and \displaystyle 2^{3} = 8, replace, and use the exponent rules:

\displaystyle 4 ^{5x - 7} = 8 ^{2x -1}

\displaystyle \left ( 2 ^{2} \right ) ^{5x - 7} = \left ( 2^{3} \right ) ^{2x -1}

\displaystyle 2 ^{2 \left ( 5x - 7 \right )}=2 ^{3 \left ( 2x - 1 \right )}

Set the exponents equal to each other and solve for \displaystyle x:

\displaystyle 2 \left ( 5x - 7 \right )=3 \left ( 2x - 1 \right )

\displaystyle 10x -14=6x - 3

\displaystyle 10x-6x -14+14=6x -6x - 3+14

\displaystyle 4x = 11

\displaystyle 4x \div 4 = 11 \div 4

\displaystyle x = 2.75

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors