Common Core: High School - Statistics and Probability : High School: Statistics & Probability

Study concepts, example questions & explanations for Common Core: High School - Statistics and Probability

varsity tutors app store varsity tutors android store

All Common Core: High School - Statistics and Probability Resources

3 Diagnostic Tests 70 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #11 : Develop Probability Distribution For Random Variable With Empirically Assigned Probabilities: Ccss.Math.Content.Hss Md.A.4

In a particular African coastal region, seismologists studied tsunamis by looking at data on seismic shifts and earthquakes in the South Pacific Ocean. During their study, they were able to note the number of earthquakes as well as the number of resulting tsunamis in this region. They observed  earthquakes and found that there was a  probability of a tsunami hitting the region in the next year based on previous data. What is the probability that the region will have  tsunamis in the next year? 

Possible Answers:

Cannot be determined

Correct answer:

Explanation:

This standard requires us to work backwards in order to deconstruct and solve a problem. At their core, questions in this standard ask us to make approximations about sample statistics while using population parameters and distributions. In other words, these standards use real data to help us approximate values of sample characteristics. It is important to note that these questions—in particular—utilize real data. This means that the data is collected in studies through the observation of real-world situations rather than examples of probabilities calculated through theoretical scenarios. 

In these questions, students will be asked to use selections of sample data to calculate probabilities be able to identify expected values; thus, we need to be familiar with how to determine what the problem is asking you to calculate (i.e. probability, expected value, or actual average) and how to apply the lessons learned in the expected means and probability distribution model lessons. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Finally, we need to determine how we will discuss how to create a probability distribution graph for a probability model. We will use the following equation to calculate the probabilities to be used in this graphical display:

Remember that in combinations and permutations a combination is calculated using the following formula:

Now, we can write the following formula.

In this formula variables are defined in the following manner:

Screen shot 2016 04 13 at 6.28.51 pm

Let's investigate this standard through the use of an example. Suppose a researcher rolls a die twelve times and notes whether the die rolls on an even or an odd number. If the die is fair (i.e. every number has an equal probability of being rolled or each roll is random), then would the probability distribution graph follow the pattern of a normal distribution? Lets create a table and solve for each variable. The probability of rolling an even number—a two, four, or a six— is three out of six or fifty percent. Likewise, the probability of failure (i.e. rolling an odd number) is three out of six or fifty percent. Next, we need to list the number of successes for each event—variable . The researcher can roll an even number every time he rolls and he may not even roll an even number in all twelve trial. We need to calculate this probability for every possible number of successful events; therefore, the number of successes ranges from zero to twelve. Last, we know that there are a total of twelve trials. We have solved for the probability of each of these variables for every possible number of successes in the trials.

Screen shot 2016 04 13 at 6.29.39 pm

Once this data is tabulated we can graph the probability of rolling an even number. If we look at the graph then we can see if it follows the bell shape curve of a normal distribution.

P rolling an even

A bell curve is shaped like the following image:

 Normal

We can quickly tell that the graph of the probability distribution does follow the shape of a normal or "bell" curve. Now we can use this information to solve the given question.

In the question we are told that the seismologists observed  earthquakes. We also know that the probability of an earthquake creating a tsunami is . Now, we need to find out the probability of three tsunamis hitting the region in the next year. In order to do so, we will use the following equation:

We need to solve for the following probability:

Now, we need to name our variables:

Now, we can substitute in these variables and solve our equation.

Simplify.

Solve and remember to follow the order of operations.

Reduce.

Example Question #1 : Possible Outcomes By Assigning Probabilities Vs. Finding Expected Values: Ccss.Math.Content.Hss Md.B.5

Big Builders Corporation needs to choose between Job A and Job B, because it can only complete one project at a time.

The projected cash flows of the two projects are as follows:

Which project should Big Builders Corporation choose?

Possible Answers:

Neither, because both Job A and Job B have negative expected payoffs.

Job B

Job A

Correct answer:

Job A

Explanation:

 

 

 

Example Question #41 : Using Probability To Make Decisions

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table. 

Screen shot 2016 06 19 at 10.25.57 pm

The game costs  to play. Given this information, should you play the game?

Possible Answers:

Yes, because over the long run the cost of playing the game is less than the expected payoff.

No, because over the long run the cost of playing the game is greater than the expected payoff.

No, because over the long run the cost of playing the game is less than the expected payoff.

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

None of these

Correct answer:

No, because over the long run the cost of playing the game is greater than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is less than the money needed to play: therefore, we can write the following:

The correct choice is "No, because over the long run the cost of playing the game is greater than the expected payoff."

Example Question #3 : Possible Outcomes By Assigning Probabilities Vs. Finding Expected Values: Ccss.Math.Content.Hss Md.B.5

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table.

The game costs  to play. Given this information, should you play the game?

Possible Answers:

No, because over the long run the cost of playing the game is less than the expected payoff.

Yes, because over the long run the cost of playing the game is less than the expected payoff.

None of these

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

No, because over the long run the cost of playing the game is greater than the expected payoff.

Correct answer:

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is greater than the money needed to play: therefore, we can write the following:

The correct choice is "Yes, because over the long run the cost of playing the game is less than the expected payoff." 

Example Question #4 : Possible Outcomes By Assigning Probabilities Vs. Finding Expected Values: Ccss.Math.Content.Hss Md.B.5

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table.

The game costs  to play. Given this information, should you play the game?

Possible Answers:

No, because over the long run the cost of playing the game is less than the expected payoff.

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

Yes, because over the long run the cost of playing the game is less than the expected payoff.

No, because over the long run the cost of playing the game is greater than the expected payoff.

None of these

Correct answer:

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is greater than the money needed to play: therefore, we can write the following:

The correct choice is "Yes, because over the long run the cost of playing the game is less than the expected payoff."

Example Question #2 : Possible Outcomes By Assigning Probabilities Vs. Finding Expected Values: Ccss.Math.Content.Hss Md.B.5

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table.

The game costs  to play. Given this information, should you play the game?

Possible Answers:

No, because over the long run the cost of playing the game is greater than the expected payoff.

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

None of these

Yes, because over the long run the cost of playing the game is less than the expected payoff.

No, because over the long run the cost of playing the game is less than the expected payoff.

Correct answer:

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is greater than the money needed to play: therefore, we can write the following:

The correct choice is "Yes, because over the long run the cost of playing the game is less than the expected payoff."

Example Question #43 : Using Probability To Make Decisions

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table.

The game costs  to play. Given this information, should you play the game?

Possible Answers:

None of these

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

No, because over the long run the cost of playing the game is less than the expected payoff.

No, because over the long run the cost of playing the game is greater than the expected payoff.

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Correct answer:

No, because over the long run the cost of playing the game is greater than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is greater than the money needed to play: therefore, we can write the following:

The correct choice is "No, because over the long run the cost of playing the game is greater than the expected payoff."

Example Question #7 : Possible Outcomes By Assigning Probabilities Vs. Finding Expected Values: Ccss.Math.Content.Hss Md.B.5

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table.

The game costs  to play. Given this information, should you play the game?

Possible Answers:

None of these

No, because over the long run the cost of playing the game is greater than the expected payoff.

No, because over the long run the cost of playing the game is less than the expected payoff.

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

Correct answer:

No, because over the long run the cost of playing the game is greater than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is greater than the money needed to play: therefore, we can write the following:

The correct choice is "No, because over the long run the cost of playing the game is greater than the expected payoff."

Example Question #1 : Possible Outcomes By Assigning Probabilities Vs. Finding Expected Values: Ccss.Math.Content.Hss Md.B.5

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table.

The game costs  to play. Given this information, should you play the game?

Possible Answers:

None of these

No, because over the long run the cost of playing the game is greater than the expected payoff.

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

No, because over the long run the cost of playing the game is less than the expected payoff.

Correct answer:

No, because over the long run the cost of playing the game is greater than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is greater than the money needed to play: therefore, we can write the following:

The correct choice is "No, because over the long run the cost of playing the game is greater than the expected payoff."

Example Question #8 : Possible Outcomes By Assigning Probabilities Vs. Finding Expected Values: Ccss.Math.Content.Hss Md.B.5

An unfair four-sided die is thrown and allowed to land without interruption. The probability and payoff of each side of the die is listed in the provided table.

The game costs  to play. Given this information, should you play the game?

Possible Answers:

Yes, because over the long run the cost of playing the game is greater than the expected payoff.

No, because over the long run the cost of playing the game is greater than the expected payoff.

No, because over the long run the cost of playing the game is less than the expected payoff.

None of these

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Correct answer:

Yes, because over the long run the cost of playing the game is less than the expected payoff.

Explanation:

This standard requires you to weigh the possible outcomes of a decision by assigning probabilities to payoff values and calculating the values of expected payoffs. In other words, this standard requires us to use the expected means equation to calculate the expected outcomes of a given game and decide if the game should or should not be played. This means that we must have a firm grasp on calculating probabilities as well as expected means. First, we will discuss probabilities in a general sense. 

A probability is generally defined as the chances or likelihood of an event occurring. It is calculated by identifying two components: the event and the sample space. The event is defined as the favorable outcome or success that we wish to observe. On the other hand, the sample space is defined as the set of all possible outcomes for the event. Mathematically we calculate probabilities by dividing the event by the sample space:

Let's use a simple example: the rolling of a die. We want to know the probability of rolling a one. We know that the sample space is six because there are six sides or outcomes to the die. Also, we know that there is only a single side with a value of one; therefore,

Now, let's convert this into a percentage:

Probabilities expressed in fraction form will have values between zero and one. One indicates that an event will definitely occur, while zero indicates that an event will not occur. Likewise, probabilities expressed as percentages possess values between zero and one hundred percent where probabilities closer to zero are unlikely to occur and those close to one hundred percent are more likely to occur. 

According to this logic, we would expect to roll a particular number on a die one out of every six rolls; however, we may roll the same number multiple times or not at all in six rolls. This discrepancy creates a difference between the expected mean and the actual mean. The expected mean is a hypothetical calculation that assumes a very large sample size and no intervening variables (such as differing forces on the roll and changes in the friction of the surface the die is rolled upon between rolls). Under these conditions we can calculate that any number on the die in a "perfect world" should be one out of six. On the other hand the true or actual mean is calculated using "real" date. In these calculations we would roll a die a particular number of times and use it to develop a probability of rolling a particular number. It is important to note that, theoretically, actual means will eventually equal expected means over a large—or near infinite—amount of trials. In other words, over many many rolls we would eventually find that each number on the die has a one in six chance of being rolled.

Now, let's discuss how expected means are determined. The expected mean is calculated using the following formula:

In this equation the variables are identified as the following:

We can illustrate this using an example problem. A list of individuals and the respective size of their motorcycles in cubic inches is provided. If you were to randomly select any one person from the list, then what size would you expect their motorcycle to be?

Screen shot 2016 04 20 at 1.23.51 pm

Let's use this information to solve the problem. In order to solve the motorcycle problem, we need to use the expected mean formula. We will substitute each of the motorcycle owner's engine size with its respective probability and solve.

 Each of the values have the same probability of being chosen—one out of eleven. As a result, we can simplify this equation:

Round to the nearest one's place.

Note that we can solve this problem in this simplified manner because all of the people had an equal probability of being chosen. If his or her probabilities differed, then we would need to substitute in each person’s respective probability of being chosen.

Now, lets use this information to solve the problem. We will use the expected means formula and substitute the  variable for the given payoff for the side of a die. Substitute the given information into the formula.

Simplify.

The expected value of the payoff over the long run is less than the money needed to play: therefore, we can write the following:

The correct choice is "Yes, because over the long run the cost of playing the game is less than the expected payoff."

All Common Core: High School - Statistics and Probability Resources

3 Diagnostic Tests 70 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors