Common Core: High School - Algebra : Reasoning with Equations & Inequalities

Study concepts, example questions & explanations for Common Core: High School - Algebra

varsity tutors app store varsity tutors android store

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #121 : New Sat Math Calculator

Solve the following inequality for , round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

 

Example Question #1 : Solve One Variable Linear Equations And Inequalities: Ccss.Math.Content.Hsa Rei.B.3

Solve the following inequality for , round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

Example Question #41 : Inequalities

Solve the following inequality for , round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

 

Example Question #491 : High School: Algebra


Solve the following inequality for , round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and  .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

 

 

Example Question #191 : Equations / Inequalities

Solve the following inequality for , round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and  .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

Example Question #191 : Equations / Inequalities


Solve the following inequality for , round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

Example Question #193 : Equations / Inequalities


Solve the following inequality for , round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

 

Example Question #1 : Systems Of Inequalities

Solve the following inequality for . Round your answer to the nearest tenth.

Possible Answers:

Correct answer:

Explanation:

The first step is to square each side of the inequality.

Now simplify each side.

Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.

Now we can use the quadratic formula.

Recall the quadratic formula.

Where , and , correspond to coefficients in the quadratic equation.

In this case  ,  , and .

Now plug these values into the quadratic equation, and we get.

Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.

Example Question #511 : New Sat

Which of the following provides the complete solution set for  given the above inequality?

Possible Answers:

Correct answer:

Explanation:

To solve this problem, first cross-multiply the inequality to eliminate the denominators. Note that while this is an inequality, you can safely multiply by both denominators since both are positive so there is no need to consider flipping the direction of the inequality. The result of this step is:

Then you can combine like terms by subtracting  from both sides:

Then to isolate the variable term, subtract  from both sides:

Finally, divide both sides by  to get the variable alone:

Example Question #1 : Use Completing The Square To Derive The Quadratic Formula: Ccss.Math.Content.Hsa Rei.B.4a

Solve  by completing the square. Round your answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

The first step is to add  to both sides.

Now we take the coefficient in front of the  term, divide it by , square it and add it to each side.

Now we factor the left hand side, and add up the right hand side.

Now we take the square root of each side.

Now we subtract  from each side.

Since we are taking the square root, we need to set up  equations to solve for .

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors