Common Core: 4th Grade Math : Solve problems involving measurement and conversion of measurements

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1351 : Common Core Math: Grade 4

What is the length of a rectangular room with an area of \displaystyle 20ft^2 and a width of \displaystyle 4ft?

 

Possible Answers:

\displaystyle 4ft

\displaystyle 3ft

\displaystyle 5ft

\displaystyle 2ft

\displaystyle 6ft

Correct answer:

\displaystyle 5ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 20=l\times 4

\displaystyle \frac{20}{4}=\frac{l\times 4}{4}

\displaystyle 5=l

Example Question #132 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a rectangular room with an area of \displaystyle 48ft^2 and a width of \displaystyle 4ft?

 

Possible Answers:

\displaystyle 8ft

\displaystyle 11ft

\displaystyle 9ft

\displaystyle 10ft

\displaystyle 12ft

Correct answer:

\displaystyle 12ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 48=l\times 4

\displaystyle \frac{48}{4}=\frac{l\times 4}{4}

\displaystyle 12=l

Example Question #171 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 50ft^2 and a width of \displaystyle 5ft?

 

Possible Answers:

\displaystyle 9ft

\displaystyle 11ft

\displaystyle 8ft

\displaystyle 12ft

\displaystyle 10ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 50=l\times 5

\displaystyle \frac{50}{5}=\frac{l\times 5}{5}

\displaystyle 10=l

Example Question #73 : How To Find The Area Of A Rectangle

What is the length of a rectangular room with an area of \displaystyle 80ft^2 and a width of \displaystyle 10ft?

 

Possible Answers:

\displaystyle 10ft

\displaystyle 7ft

\displaystyle 8ft

\displaystyle 9ft

\displaystyle 11ft

Correct answer:

\displaystyle 8ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 80=l\times 10

\displaystyle \frac{80}{10}=\frac{l\times 10}{10}

\displaystyle 8=l

Example Question #131 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a rectangular yard with an area of \displaystyle 8m^2 and a width of \displaystyle 4m?

 

Possible Answers:

\displaystyle 4m

\displaystyle 3m

\displaystyle 2m

\displaystyle 6m

\displaystyle 5m

Correct answer:

\displaystyle 2m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 8=l\times 4

\displaystyle \frac{8}{4}=\frac{l\times 4}{4}

\displaystyle 2=l

Example Question #132 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a rectangular yard with an area of \displaystyle 12m^2 and a width of \displaystyle 4m?

 

Possible Answers:

\displaystyle 5m

\displaystyle 6m

\displaystyle 3m

\displaystyle 4m

\displaystyle 2m

Correct answer:

\displaystyle 3m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 12=l\times 4

\displaystyle \frac{12}{4}=\frac{l\times 4}{4}

\displaystyle 3=l

Example Question #133 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a rectangular yard with an area of \displaystyle 15m^2 and a width of \displaystyle 3m?

 

Possible Answers:

\displaystyle 4m

\displaystyle 5m

\displaystyle 3m

\displaystyle 5m

\displaystyle 6m

Correct answer:

\displaystyle 5m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 15=l\times 3

\displaystyle \frac{15}{3}=\frac{l\times 3}{3}

\displaystyle 5=l

Example Question #51 : Solving For Length

What is the length of a rectangular yard with an area of \displaystyle 16m^2 and a width of \displaystyle 2m?

 

Possible Answers:

\displaystyle 8m

\displaystyle 7m

\displaystyle 9m

\displaystyle 6m

\displaystyle 5m

Correct answer:

\displaystyle 8m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 16=l\times 2

\displaystyle \frac{16}{2}=\frac{l\times 2}{2}

\displaystyle 8=l

Example Question #52 : Solving For Length

What is the length of a rectangular yard with an area of \displaystyle 20m^2 and a width of \displaystyle 5m?

 

Possible Answers:

\displaystyle 3m

\displaystyle 1m

\displaystyle 5m

\displaystyle 4m

\displaystyle 2m

Correct answer:

\displaystyle 4m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 20=l\times 5

\displaystyle \frac{20}{5}=\frac{l\times 5}{5}

\displaystyle 4=l

Example Question #53 : Solving For Length

What is the length of a rectangular yard with an area of \displaystyle 24m^2 and a width of \displaystyle 4m?

 

Possible Answers:

\displaystyle 9m

\displaystyle 6m

\displaystyle 7m

\displaystyle 10m

\displaystyle 8m

Correct answer:

\displaystyle 6m

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=l\times 4

\displaystyle \frac{24}{4}=\frac{l\times 4}{4}

\displaystyle 6=l

Learning Tools by Varsity Tutors