All College Algebra Resources
Example Questions
Example Question #2 : Simplifying Polynomials
Divide the trinomial below by .
We can accomplish this division by re-writing the problem as a fraction.
The denominator will distribute, allowing us to address each element separately.
Now we can cancel common factors to find our answer.
Example Question #1 : Polynomial Functions
Simplify:
First, factor the numerator of the quotient term by recognizing the difference of squares:
Cancel out the common term from the numerator and denominator:
FOIL (First Outer Inner Last) the first two terms of the equation:
Combine like terms:
Example Question #2 : Dividing Polynomials
Divide:
First, rewrite this problem so that the missing term is replaced by
Divide the leading coefficients:
, the first term of the quotient
Multiply this term by the divisor, and subtract the product from the dividend:
Repeat this process with each difference:
, the second term of the quotient
One more time:
, the third term of the quotient
, the remainder
The quotient is and the remainder is ; this can be rewritten as a quotient of
Example Question #2 : Polynomial Functions
Divide:
Divide the leading coefficients to get the first term of the quotient:
, the first term of the quotient
Multiply this term by the divisor, and subtract the product from the dividend:
Repeat these steps with the differences until the difference is an integer. As it turns out, we need to repeat only once:
, the second term of the quotient
, the remainder
Putting it all together, the quotient can be written as .
Example Question #3 : Dividing Polynomials
Simplify the following expression:
Simplify the following expression:
To begin, we need to recognize the bottom as a difference of squares. Rewrite it as follows.
So our answer is:
Example Question #4 : Dividing Polynomials
Simplify the following expression:
Simplify the following expression:
First, let's multiply the 3x through:
Next, divide out the x from the bottom:
So our answer is: