Calculus 2 : Finding Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #611 : Finding Integrals

Evaluate the following integral:

Possible Answers:

 

Correct answer:

Explanation:

To evaluate the integral, we must split it into two integrals:

The first integral is equal to

and was found using the following rule:

The second integral is solved by performing the following substitution:

Now, rewrite the integral and integrate:

The integration was performed using the following rule:

Finally, replace  with our original term and add the two results of the integrations together:

Example Question #24 : Solving Integrals By Substitution

Evaluate the following indefinite integral using the substitution method.


Possible Answers:

Correct answer:

Explanation:

The integral can be expanded by distributing the exponent.

 

We will make the following substitution:

.

 

Differentiating both sides yields

.

 

We can then substitute the left hand side of each equation into our integral and evaluate it now.

 

Finally, we substitute the original variable back into the expression:

.

 

Example Question #28 : Solving Integrals By Substitution

Solve:

 

Possible Answers:

Correct answer:

Explanation:

Use substitution:

Plug the  and  into the regular equation, but no need to worry about the bounds yet:

 

Plug  back into the integrated equation from above and evaluate from  to .

 

Example Question #612 : Finding Integrals

Solve:

 

Possible Answers:

None of the chocies.

Correct answer:

Explanation:

Use substitution integration:

 

Example Question #22 : Solving Integrals By Substitution

What is the integral of ?

Possible Answers:

Correct answer:

Explanation:

Use substitution:

 

    

Substitute  back in.

 

Example Question #961 : Integrals

Possible Answers:

Correct answer:

Explanation:

To evaluate the integral, we must first perform the following substitution:

Now, rewrite the integral and integrate:

The integration was performed using the following rule:

Finally, replace u with the original term:

Example Question #32 : Solving Integrals By Substitution

Evaluate the following integral:

Possible Answers:

Correct answer:

Explanation:

To evaluate the integral, we must make the following substitution:

Now, rewrite the integral and integrate:

The integral was performed using the following rule:

Finally, replace u with our original term:

Example Question #31 : Solving Integrals By Substitution

Evaluate the indefinite integral .

Possible Answers:

None of the other answers

Correct answer:

Explanation:

We proceed as follows,

. Start

. Factor out the 10.

 

Use u-substitution with , then taking derivates of both sides gives.

 

. Substitute values

. Factor out the negative.

. The antiderivative of  is . Don't forget .

. Substitute  back.

 

Example Question #31 : Solving Integrals By Substitution

Evaluate the indefinite integral .

Possible Answers:

None of the other answers

Not possible to integrate

Correct answer:

Explanation:

We evaluate the integral as follows,

 

. Start

Use u-substitution, let , then taking derivatives of both sides gives . Divide both sides of this equation by , giving . Now we can substitute out , and get

 

. Factor out the .

. Integrate  and add .

. Substitute back

Example Question #31 : Solving Integrals By Substitution

Evaluate .

Possible Answers:

None of the other answers.

Correct answer:

Explanation:

We use u-substitution to evaluate this integral.

Let . Subtracting  gives , and taking derivatives gives (We subtract  from both sides in order to make the expression under the square root as simple as possible). Then we have

 

. Start

. Make our substitutions. (Make sure you change the bounds of integration too, by plugging  and  into  for ).

.

Learning Tools by Varsity Tutors