Calculus 1 : How to find differential functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #674 : Functions

Find the divergence of the function \displaystyle F(x,y,z)=4xz^2\widehat{i}+3xyz\widehat{j}+2yz^3\widehat{k} at \displaystyle (4,1,1)

Hint: \displaystyle divF(x_1,x_2,...x_n)=\frac{\delta F_{x_1}}{\delta x_1}+\frac{\delta F_{x_2}}{\delta x_2}+...+\frac{\delta F_{x_n}}{\delta x_n}

Possible Answers:

\displaystyle 28

\displaystyle 16

\displaystyle 8

\displaystyle 22

\displaystyle 19

Correct answer:

\displaystyle 22

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

\displaystyle F(x,y,z)=4xz^2\widehat{i}+3xyz\widehat{j}+2yz^3\widehat{k} 

What we will do is take the derivative of each vector element with respect to its variable \displaystyle (\widehat{i}:x,\widehat{j}:y,\widehat{k}:z)

Then sum the results together:

\displaystyle divF(x,y,z)=4z^2+3xz+6yz^2

At the point \displaystyle (4,1,1)

\displaystyle divF(4,1,1)=4(1)^2+3(4)(1)+6(1)(1)^2=22

Example Question #675 : Functions

Find the divergence of the function \displaystyle F(x,y,z)=y^2z^3\widehat{i}+3x^3y^2\widehat{j}+x^2z\widehat{k} at \displaystyle (3,2,4)

Hint: \displaystyle divF(x_1,x_2,...x_n)=\frac{\delta F_{x_1}}{\delta x_1}+\frac{\delta F_{x_2}}{\delta x_2}+...+\frac{\delta F_{x_n}}{\delta x_n}

Possible Answers:

\displaystyle 297

\displaystyle 333

\displaystyle 72

\displaystyle 216

\displaystyle 153

Correct answer:

\displaystyle 333

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

\displaystyle F(x,y,z)=y^2z^3\widehat{i}+3x^3y^2\widehat{j}+x^2z\widehat{k} 

What we will do is take the derivative of each vector element with respect to its variable \displaystyle (\widehat{i}:x,\widehat{j}:y,\widehat{k}:z)

Then sum the results together:

\displaystyle divF(x,y,z)=0+6x^3y+x^2

At the point \displaystyle (3,2,4)

\displaystyle divF(3,2,4)=6(3)^3(2)+3^2=333

Example Question #680 : Functions

Find the divergence of the function \displaystyle F(x,y)=ln(x^2y)\widehat{i}+3^{xy^2}\widehat{j} at \displaystyle (1.3,1.7)

Hint: \displaystyle divF(x_1,x_2,...x_n)=\frac{\delta F_{x_1}}{\delta x_1}+\frac{\delta F_{x_2}}{\delta x_2}+...+\frac{\delta F_{x_n}}{\delta x_n}

Possible Answers:

\displaystyle 189.22

\displaystyle 441.23

\displaystyle 617.89

\displaystyle 12.13

\displaystyle 302.71

Correct answer:

\displaystyle 302.71

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

\displaystyle F(x,y)=ln(x^2y)\widehat{i}+3^{xy^2}\widehat{j} 

What we will do is take the derivative of each vector element with respect to its variable \displaystyle (\widehat{i}:x,\widehat{j}:y,\widehat{k}:z)

Then sum the results together:

Derivative of an exponential: 

\displaystyle d[a^u]=a^uduln(a)

Derivative of a natural log: 

\displaystyle d[ln(u)]=\frac{du}{u}

Note that u may represent large functions, and not just individual variables!

\displaystyle divF(x,y)=\frac{2xy}{x^2y}+2xy(3^{xy^2})ln(3)

\displaystyle divF(x,y)=\frac{2}{x}+2xy(3^{xy^2})ln(3)

At the point \displaystyle (1.3,1.7)

\displaystyle divF(1.3,1.7)=\frac{2}{1.3}+2(1.3)(1.7)(3^{(1.3)(1.7)^2})ln(3)

\displaystyle divF(1.3,1.7)=302.71

Example Question #681 : Differential Functions

Find the divergence of the function \displaystyle F(x,y)=ln(2^{xy})\widehat{i}+4x^3y^3\widehat{j} at \displaystyle (1.2,1.5)

Hint: \displaystyle divF(x_1,x_2,...x_n)=\frac{\delta F_{x_1}}{\delta x_1}+\frac{\delta F_{x_2}}{\delta x_2}+...+\frac{\delta F_{x_n}}{\delta x_n}

Possible Answers:

\displaystyle 29.3

\displaystyle 81.0

\displaystyle 66.6

\displaystyle 47.7

\displaystyle 93.5

Correct answer:

\displaystyle 47.7

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

\displaystyle F(x,y)=ln(2^{xy})\widehat{i}+4x^3y^3\widehat{j} 

What we will do is take the derivative of each vector element with respect to its variable \displaystyle (\widehat{i}:x,\widehat{j}:y,\widehat{k}:z)

Then sum the results together:

Derivative of an exponential: 

\displaystyle d[a^u]=a^uduln(a)

Derivative of a natural log: 

\displaystyle d[ln(u)]=\frac{du}{u}

Note that u may represent large functions, and not just individual variables!

\displaystyle divF(x,y)=\frac{y2^{xy}ln(2)}{2^{xy}}+12x^3y^2

\displaystyle divF(x,y)=yln(2)+12x^3y^2

At the point \displaystyle (1.2,1.5)

\displaystyle divF(1.2,1.5)=1.5ln(2)+12(1.2)^3(1.5)^2

\displaystyle divF(1.2,1.5)=47.7

 

Example Question #682 : Differential Functions

Find the divergence of the function \displaystyle F(x,y)=tan(xy^2)\widehat{i}+e^{x^2y^2}\widehat{j} at \displaystyle (-1,1)

Hint: \displaystyle divF(x_1,x_2,...x_n)=\frac{\delta F_{x_1}}{\delta x_1}+\frac{\delta F_{x_2}}{\delta x_2}+...+\frac{\delta F_{x_n}}{\delta x_n}

Possible Answers:

\displaystyle -8.86

\displaystyle 6.09

\displaystyle 4.43

\displaystyle 8.86

\displaystyle -4.43

Correct answer:

\displaystyle 8.86

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

\displaystyle F(x,y)=tan(xy^2)\widehat{i}+e^{x^2y^2}\widehat{j}

What we will do is take the derivative of each vector element with respect to its variable \displaystyle (\widehat{i}:x,\widehat{j}:y,\widehat{k}:z)

Then sum the results together:

Derivative of an exponential: 

\displaystyle d[e^u]=e^udu

Trigonometric derivative: 

\displaystyle d[tan(u)]=\frac{du}{cos^2(u)}

Note that u v may represent large functions, and not just individual variables!

\displaystyle divF(x,y)=\frac{y^2}{cos^2(xy^2)}+2x^2ye^{x^2y^2}

At the point \displaystyle (-1,1)

\displaystyle divF(x,y)=\frac{1^2}{cos^2((-1)1^2)}+2(-1)^2(1)e^{(-1)^2(1)^2}=8.86 

Example Question #683 : Differential Functions

Find the divergence of the function \displaystyle F(x,y)=x^{ycos(y)}\widehat{i}+y^{xtan(x)}\widehat{j} at \displaystyle (2,4)

Hint: \displaystyle divF(x_1,x_2,...x_n)=\frac{\delta F_{x_1}}{\delta x_1}+\frac{\delta F_{x_2}}{\delta x_2}+...+\frac{\delta F_{x_n}}{\delta x_n}

Possible Answers:

\displaystyle -0.216

\displaystyle -0.133

\displaystyle -0.977

\displaystyle -0.004

\displaystyle -0.021

Correct answer:

\displaystyle -0.216

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

\displaystyle F(x,y)=x^{ycos(y)}\widehat{i}+y^{xtan(x)}\widehat{j} 

What we will do is take the derivative of each vector element with respect to its variable \displaystyle (\widehat{i}:x,\widehat{j}:y,\widehat{k}:z)

Then sum the results together:

\displaystyle divF(x,y)=ycos(y)x^{ycos(y)-1}+xtan(x)y^{xtan(x)-1}

Note that for the complexity of the function, the derivatives are rather simple, given that when deriving with respect to one variable, we treat the other as constant!

At the point \displaystyle (2,4)

\displaystyle divF(2,4)=4cos(4)2^{4cos(4)-1}+2tan(2)4^{2tan(2)-1}

\displaystyle divF(2,4)=-0.216

 

Example Question #681 : Functions

Find the derivative of the function \displaystyle g(x) = \ln(x^2+e^x).

Possible Answers:

\displaystyle \frac{1}{x^2+e^x}

\displaystyle 2+\frac{e^x}{x}

\displaystyle \frac{2x+xe^{x-1}}{x^2+e^x}

\displaystyle \frac{2x+e^x}{x^2+e^x}

\displaystyle \frac{1}{2x+e^x}

Correct answer:

\displaystyle \frac{2x+e^x}{x^2+e^x}

Explanation:

Using chain rule, we get \displaystyle g'(x)=\frac{1}{x^2+e^x} \cdot (2x+e^x) = \frac{2x+e^x}{x^2+e^x}.

Example Question #685 : Differential Functions

Find the slope of the function \displaystyle f(x,y)=x^3y+ tan(xy) at \displaystyle (1.5,3.5)

Possible Answers:

\displaystyle (9.10,-36.97)

\displaystyle (-36.97,-9.10)

\displaystyle (9.10,36.97)

\displaystyle (-9.10,36.97)

\displaystyle (36.97,9.10)

Correct answer:

\displaystyle (36.97,9.10)

Explanation:

To consider finding the slope, let's discuss the topic of the gradient.

For a function \displaystyle f(x_1,x_2,...,x_n), the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:

\displaystyle \frac{\delta f}{\delta x_1}\widehat{e_1}+\frac{\delta f}{\delta x_2}\widehat{e_2}+...+\frac{\delta f}{\delta x_n}\widehat{e_n}

It is essentially the slope of a multi-dimensional function at any given point

Knowledge of the following derivative rules will be necessary:

\displaystyle d[tan(u)]=\frac{du}{cos^2(u)}

Note that u may represent large functions, and not just individual variables!

The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.

\displaystyle f(x,y)=x^3y+ tan(xy) at \displaystyle (1.5,3.5)

x:

\displaystyle \frac{\delta f}{\delta x}=3x^2y+\frac{y}{cos^2(xy)};3(1.5)^2(3.5)+\frac{3.5}{cos^2((1.5)(3.5))}=36.97

y:

\displaystyle \frac{\delta f}{\delta y}=x^3+\frac{x}{cos^2(xy)};1.5^3+\frac{1.5}{cos^2((1.5)(3.5))}=9.10

The slope is \displaystyle (36.97,9.10)

Example Question #686 : Differential Functions

Find the slope of the function \displaystyle f(x,y)=x^{2\pi y} at \displaystyle (3.3,2.1)

Possible Answers:

\displaystyle (2.78 \cdot 10^{6},5.21 \cdot 10^{6})

\displaystyle (2.78 \cdot 10^{9},5.21 \cdot 10^{9})

\displaystyle (2.78 \cdot 10^{10},5.21 \cdot 10^{10})

\displaystyle (2.78 \cdot 10^{8},5.21 \cdot 10^{8})

\displaystyle (2.78 \cdot 10^{7},5.21 \cdot 10^{7})

Correct answer:

\displaystyle (2.78 \cdot 10^{7},5.21 \cdot 10^{7})

Explanation:

To consider finding the slope, let's discuss the topic of the gradient.

For a function \displaystyle f(x_1,x_2,...,x_n), the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:

\displaystyle \frac{\delta f}{\delta x_1}\widehat{e_1}+\frac{\delta f}{\delta x_2}\widehat{e_2}+...+\frac{\delta f}{\delta x_n}\widehat{e_n}

It is essentially the slope of a multi-dimensional function at any given point

Knowledge of the following derivative rules will be necessary:

Derivative of an exponential: 

\displaystyle d[a^u]=a^uduln(a)

Note that u may represent large functions, and not just individual variables!

The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.

\displaystyle f(x,y)=x^{2\pi y} at \displaystyle (3.3,2.1)

x:

\displaystyle \frac{\delta f}{\delta x}=(2\pi y)x^{2\pi y -1};(2\pi (2.1))(3.3)^{2\pi (2.1) -1}=2.78 \cdot 10^{7}

y:

\displaystyle \frac{\delta f}{\delta y}=(2\pi)(x^{2\pi y})ln(x);(2\pi)(3.3^{2\pi (2.1)})ln(3.3)=5.21 \cdot 10^{7}

The slope is \displaystyle (2.78 \cdot 10^{7},5.21 \cdot 10^{7})

Example Question #492 : How To Find Differential Functions

First Derivative

Differentiate \displaystyle y=(4-x+5x^{3})^{14}

Possible Answers:

\displaystyle 14(4-x+5x^3)^{13}(15x^2-1))

\displaystyle \frac{14(4-x+5x^3)^{13}}{15x^2-1}

\displaystyle \frac{14(4-x+5x^3)^{15}}{15x^2-1}

\displaystyle \frac{14(4-x+5x^3)^{13}}{15x-1}

None of the above

Correct answer:

\displaystyle 14(4-x+5x^3)^{13}(15x^2-1))

Explanation:

\displaystyle y=(4-x+5x^{3})^{14}

Let \displaystyle \left(4-x+5x^3\right)=u

By applying the chain rule,\displaystyle \quad \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} we get, 

\displaystyle \frac{d}{du}(u^{14})\frac{d}{dx}\left(4-x+5x^3\right) implies, \displaystyle 14u^{13}\left(15x^2-1\right)

By substituting back \displaystyle u=\left(4-x+5x^3\right) we get,

\displaystyle 14(4-x+5x^3)^{13}(15x^2-1))

Learning Tools by Varsity Tutors