All Calculus 1 Resources
Example Questions
Example Question #631 : How To Find Rate Of Change
A cube is growing in size. What is the ratio of the rate of growth of the cube's volume to the rate of growth of the area of a single face when its sides have length 428?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #3551 : Calculus
A cube is growing in size. What is the ratio of the rate of growth of the cube's volume to the rate of growth of the area of a single face when its sides have length 296?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #631 : How To Find Rate Of Change
A cube is diminishing in size. What is the ratio of the rate of loss of the cube's volume to the rate of loss of the area of a single face when its sides have length ?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #641 : Rate Of Change
A cube is diminishing in size. What is the ratio of the rate of loss of the cube's volume to the rate of loss of the area of a single face when its sides have length ?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #2521 : Functions
A cube is diminishing in size. What is the ratio of the rate of loss of the cube's volume to the rate of loss of the area of a single face when its sides have length ?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #2521 : Functions
A cube is diminishing in size. What is the ratio of the rate of loss of the cube's volume to the rate of loss of the area of a single face when its sides have length ?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #644 : Rate Of Change
A cube is diminishing in size. What is the ratio of the rate of loss of the cube's volume to the rate of loss of the area of a single face when its sides have length ?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #2521 : Functions
A cube is diminishing in size. What is the ratio of the rate of loss of the cube's volume to the rate of loss of the area of a single face when its sides have length ?
Begin by writing the equations for a cube's dimensions. Namely its volume and the area of a face in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and surface area:
Example Question #641 : How To Find Rate Of Change
A cube is growing in size. What is the ratio of the rate of growth of the cube's volume to the rate of growth of its diagonal when its sides have length ?
Begin by writing the equations for a cube's dimensions. Namely its volume and diagonal in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and diagonal:
Example Question #646 : Rate Of Change
A cube is growing in size. What is the ratio of the rate of growth of the cube's volume to the rate of growth of its diagonal when its sides have length 17?
Begin by writing the equations for a cube's dimensions. Namely its volume and diagonal in terms of the length of its sides:
The rates of change of these can be found by taking the derivative of each side of the equations with respect to time:
Now, knowing the length of the sides, simply divide to find the ratio between the rate of change of the volume and diagonal: