Basic Geometry : How to find the area of a square

Study concepts, example questions & explanations for Basic Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #786 : Basic Geometry

Find the area of a square inscribed in a circle that has a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #787 : Basic Geometry

Find the area of a square inscribed in a circle with a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #788 : Basic Geometry

Find the area of a square inscribed in a circle that has a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #783 : Basic Geometry

Find the area of a square inscribed in a circle that has a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #790 : Basic Geometry

Find the area of a square inscribed in a circle that has a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #104 : How To Find The Area Of A Square

Find the area of a square inscribed in a circle that has a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #105 : How To Find The Area Of A Square

Find the area of a square inscribed in a circle that has a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #101 : How To Find The Area Of A Square

Find the area of a square inscribed in a circle with a diameter of .

Possible Answers:

Correct answer:

Explanation:

13

Notice that when a squre is inscribed in a circle, the diameter of the circle is also the diagonal of the square.

Thus, we can figure out the diagonal of the square.

Recall that the diagonal of a square is also the hypotenuse of a right isosceles triangle that has the sides of the square as its legs. We can then use the Pythagorean Theorem to find the length of the sides of the square.

Now, recall the formula for the area of a square.

Thus, we can also write the following formula to find the area of the square:'

Plug in the value of the diagonal to find the area of the square.

Example Question #791 : Basic Geometry

Find the area of a square given side length .

Possible Answers:

Correct answer:

Explanation:

To solve, simply use the formula for the area of a square and remember to distribute the square to both the constant and the variable. Thus,

Example Question #792 : Basic Geometry

Find the area of a square given side length of 4.

Possible Answers:

Correct answer:

Explanation:

To find the area of a square multiply the width with the length. In the case of a square, all sides are the same length thus, the area is simply the side length squarred.

To solve, simply use the formula for the area of a square and let,

.

Thus,

.

Learning Tools by Varsity Tutors