GMAT Math : Geometry

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Calculating The Length Of The Side Of An Equilateral Triangle

If the area of an equilateral is \displaystyle 12, given a height of \displaystyle 5, what is the base of the triangle?

Possible Answers:

\displaystyle 24

\displaystyle 10

\displaystyle 60

\displaystyle 4.8

Correct answer:

\displaystyle 4.8

Explanation:

We derive the equation of base of a triangle from the area of a triangle formula:

\displaystyle A=\frac{bh}{2}

\displaystyle b=\frac{2A}{h}

\displaystyle b=\frac{2*12}{5}

\displaystyle b=4.8

Example Question #3 : Equilateral Triangles

Export-png__3_

The height of an equilateral triangle \displaystyle ABC is \displaystyle 5. What is the length of side \displaystyle AB?

Possible Answers:

\displaystyle 3\sqrt{5}

\displaystyle 2\sqrt{3}

\displaystyle \frac{5}{\sqrt{3}}

\displaystyle 7

\displaystyle \frac{10}{\sqrt{3}}

Correct answer:

\displaystyle \frac{10}{\sqrt{3}}

Explanation:

Similarily, we can use the same formula for the height to find the length of the side of an equilateral triangle, which is given by 

\displaystyle s=\frac{2h}{\sqrt{3}}, where \displaystyle h is the length of the height.

Therefore, the final answer is

 \displaystyle \frac{2\cdot 5}{\sqrt3}=\frac{10}{\sqrt{3}}

Example Question #303 : Geometry

Export-png__5_

Equilateral triangle \displaystyle ABC is inscribed in a circle with radius \displaystyle 5, what is the length of a side of the triangle?

Possible Answers:

\displaystyle 5\sqrt{3}

\displaystyle \frac{15}{\sqrt{3}}

\displaystyle \sqrt{5}

\displaystyle 3\sqrt{5}

\displaystyle \frac{15}{2}

Correct answer:

\displaystyle \frac{15}{\sqrt{3}}

Explanation:

Since we are given the radius, we should be able to find the height of the equilateral triangle. Indeed, the center of the circle is at the intersections of the heights of the triangle, and is located \displaystyle \frac{2}{3} away from the edge of a given height.

Therefore 5, the radius of the circle is \displaystyle \frac{2}{3} of the height.

Therefore, the height must be \displaystyle \frac{15}{2}.

From here, we can use the formula for the height of the equilateral triangle \displaystyle h=s\frac{\sqrt{3}}{2}, where \displaystyle h is the length of the height and \displaystyle s is the length of a side of the equilateral triangle.

Therefore, \displaystyle s=2\frac{h}{\sqrt{3}}, then \displaystyle \frac{15}{\sqrt{3}} is the final answer.

Example Question #304 : Geometry

Three straight sticks are gathered of exactly equal length. They are placed end to end on the ground to form a triangle. If the area of the triangle they form is 1.732 square feet. What is the length in feet of each stick?

Possible Answers:

\displaystyle 3\ feet

\displaystyle 1.5\ feet

\displaystyle 1\ foot

\displaystyle 2\ feet

\displaystyle 2.5\ feet

Correct answer:

\displaystyle 2\ feet

Explanation:

Equilateral_triangle

Let \displaystyle s be the length of a side of an equilateral triangle. Then the formula for the area of an equilateral triangle with side \displaystyle s is

 \displaystyle \frac{s^2\sqrt{3}}{4}

So solving \displaystyle 1.732 = \frac{s^2\sqrt{3}}{4} 

we get \displaystyle s=2.

 

Alternative Solution:

Without knowing this formula you can still use the Pythagorean Theorem to solve this. By drawing the height of the triangle, you split the triangle into 2 right triangles of equal size. The sides are the height, \displaystyle \frac{s}{2} and \displaystyle s. Letting \displaystyle h stand for the unknown height, we solve 

\displaystyle (\frac{s}{2})^2 + h^2= s^2 solving for \displaystyle h we get

 \displaystyle h=\sqrt(s^2-(\frac{s}{2})^2) = \sqrt(s^2-\frac{s^2}{4}) = \sqrt(\frac{3s^2}{4}) = \frac{s\sqrt(3)}{2}

The area for any triangle is the base times the height divided by 2. So

 \displaystyle 1.732=\frac{sh}{2} = \frac{s(s\sqrt(3))}{2*2} = \frac{s^2\sqrt(3)}{4} or \displaystyle s=2.

Example Question #1 : Calculating The Area Of An Equilateral Triangle

If an equilateral triangle has a side length of \displaystyle 3 and a height of \displaystyle 2, what is the area of the given triangle?

Possible Answers:

\displaystyle 3

\displaystyle 9

\displaystyle 6

\displaystyle 12

Correct answer:

\displaystyle 3

Explanation:

To find the area of a traingle, we need the height and base lengths. Plug the given values into the following formula:

\displaystyle A= \frac{bh}{2}

\displaystyle = \frac{(3*2)}2 {}

\displaystyle =3

Example Question #1 : Equilateral Triangles

Export-png__3_

Triangle \displaystyle ABC is an equilateral triangle with side length \displaystyle 2. What is the area of the triangle?

Possible Answers:

\displaystyle 3

\displaystyle 2\sqrt{3}

\displaystyle \frac{\sqrt{3}}{4}

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle \sqrt{3}

Correct answer:

\displaystyle \sqrt{3}

Explanation:

The area of an equilateral triangle is given by the following formula:

 \displaystyle \frac{s^{2}\sqrt{3}}{4}, where \displaystyle s is the length of a side.

Since we know the length of the side, we can simply plug it in the formula and we have \displaystyle \frac{4\sqrt{3}}{4} or \displaystyle \sqrt{3}, which is the final answer.

Example Question #307 : Geometry

Export-png__5_

\displaystyle ABC is an equilateral triangle inscribed in a cirlce with radius \displaystyle 3. What is the area of the triangle \displaystyle ABC?

Possible Answers:

\displaystyle 4\sqrt{3}

\displaystyle 27\frac{\sqrt{3}}{4}

\displaystyle 27

\displaystyle 3\frac{\sqrt{3}}{4}

\displaystyle 27\frac{\sqrt{5}}{4}

Correct answer:

\displaystyle 27\frac{\sqrt{3}}{4}

Explanation:

Since we are given a radius for the circle, we should be able to find the length of the height of the equilateral triangle, indeed, the center of the circle is \displaystyle \frac{2}{3} of the length of the height from any vertex.

Therefore, the height is \displaystyle 3=\frac{2}{3}\cdot h where \displaystyle h is the length of the height of the triangle. Therefore \displaystyle h=\frac{9}{2}.

We can now plug in this value in the formula of the height of an equilateral triangle\displaystyle h=s\frac{\sqrt{3}}{2}, where \displaystyle s is the length of the side of the triangle.

Therefore, \displaystyle s=\frac{9}{\sqrt{3}} or \displaystyle 3\sqrt{3}.

Now we should plug in this value into the formula for the area of an equilateral triangle \displaystyle a=s^{2}\frac{\sqrt{3}}{4} where \displaystyle a is the value of the area of the equilateral triangle. Therefore \displaystyle a= 27\frac{\sqrt{3}}{4}, which is our final answer. 

Example Question #54 : Triangles

A given equilateral triangle has a side length \displaystyle 4 and a height \displaystyle 7 . What is the area of the triangle?

Possible Answers:

\displaystyle 14

\displaystyle 22

\displaystyle 11

\displaystyle 28

Not enough information provided

Correct answer:

\displaystyle 14

Explanation:

For a given equilateral triangle with a side length \displaystyle b and a height \displaystyle h, the area \displaystyle A is 

\displaystyle A=\frac{1}{2}bh. Plugging in the values provided:

\displaystyle A=\frac{1}{2}(4)(7)

\displaystyle A=\frac{1}{2}(28)

\displaystyle A=14

 

Example Question #55 : Triangles

A given right triangle has a base length \displaystyle 5 and a height \displaystyle 4 . What is the area of the triangle?

Possible Answers:

Not enough information to solve

\displaystyle 20

\displaystyle 9

\displaystyle 18

\displaystyle 10

Correct answer:

\displaystyle 10

Explanation:

For a given right triangle with a side length \displaystyle b and a height \displaystyle h, the area \displaystyle A is 

\displaystyle A=\frac{1}{2}bh. Plugging in the values provided:

\displaystyle A=\frac{1}{2}(5)(4)

\displaystyle A=\frac{1}{2}(20)

\displaystyle A=10

Example Question #310 : Geometry

A given right triangle has a base of length \displaystyle 9 and a height \displaystyle 8 . What is the area of the triangle?

Possible Answers:

\displaystyle 34

\displaystyle 17

\displaystyle 72

Not enough information to solve

\displaystyle 36

Correct answer:

\displaystyle 36

Explanation:

For a given right triangle with a side length \displaystyle b and a height \displaystyle h, the area \displaystyle A is 

\displaystyle A=\frac{1}{2}bh. Plugging in the values provided:

\displaystyle A=\frac{1}{2}(9)(8)

\displaystyle A=\frac{1}{2}(72)

\displaystyle A=36

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors