GMAT Math : GMAT Quantitative Reasoning

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Calculating The Perimeter Of A Rectangle

The width of a rectangle is twice the length. Find an equation representing the perimeter. 

Possible Answers:

Correct answer:

Explanation:

The perimeter of a rectangle can be found by adding up all the sides: 

We are told the width of the rectangle is twice its length so , inserting this into our equation for the perimeter leaves us with: 

, which is II

Example Question #2 : Calculating The Perimeter Of A Rectangle

Find the perimeter of a rectangle whose width is  and length is .

Possible Answers:

Correct answer:

Explanation:

To solve, simply use the formula for the perimeter of a rectangle:

Example Question #8 : Calculating The Perimeter Of A Rectangle

Rectangle 1

Note: figure NOT drawn to scale

Give the perimeter of the above rectangle.

Possible Answers:

Correct answer:

Explanation:

The perimeter of a rectangle is the sum of the lengths of its sides. Since a rectangle has two pairs of sides of the same lengths, this will be

Example Question #1 : Calculating The Length Of The Side Of A Rectangle

The area of a rectangle is 85; its length is . What is its width?

Possible Answers:

Correct answer:

Explanation:

The product of the length and the width of a rectangle is its area, so divide area by length to get width. This is simply .

Example Question #2 : Calculating The Length Of The Side Of A Rectangle

The perimeter of a rectangle is ; its width is . Which of the following expressions is equal to the length of the rectangle?

Possible Answers:

Correct answer:

Explanation:

Substitute  and solve for :

Example Question #124 : Geometry

Rectangle A and Rectangle B have the same area. Rectangle A has length 80% that of Rectangle B, and its width is 120 centimeters. What is the width of Rectangle B?

Possible Answers:

Not enough information is given to answer the question.

Correct answer:

Explanation:

Let  and  be the length and width of Rectangle B.

Then the width of Rectangle A is 80% of , or . Its length is 120.

The area shared by the two can be expressed as both  and . We can set the two equal to each other and calculate :

, or .

Example Question #125 : Geometry

Craig is building a fence around his rectangular back yard. He knows that the yard is  feet longer than twice the width. What is the width of the yard if Craig needs  feet of fencing to completely enclose the yard?

Possible Answers:

Correct answer:

Explanation:

The length is 5 more twice the width. Let y be the length of the yard and w the width.

The perimeter of the yard is 160, so we can write:

The yard is 25 feet wide and 55 feet long.

Example Question #126 : Geometry

A rectangle has an area of . If the width of the rectangle is , what is its length?

Possible Answers:

Correct answer:

Explanation:

Using the formula for the area of a rectangle, we can solve for the unknown length. We are given the area and the width, so we can solve for the length as follows:

Example Question #2 : Calculating The Length Of The Side Of A Rectangle

The length of a rectangle is twice its width. If the rectangle's area is , what is its length?

Possible Answers:

Correct answer:

Explanation:

We're told the length is twice the width so  

Remember, we're being asked for the length, not the width so:

Example Question #3 : Calculating The Length Of The Side Of A Rectangle

A rectangle with a perimeter of  has a width  times that of its length. Find its length.

Possible Answers:

Correct answer:

Explanation:

The perimeter of a rectangle is found by . Since we are told , we can substitute this into our equation and solve for the length.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors