GMAT Math : Solving by Factoring

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1491 : Gmat Quantitative Reasoning

Factor:

\displaystyle 4x^{2}-12xy +9y^{2} - 64x^{2}y^{2}

Possible Answers:

\displaystyle \left ( 2x+3y +8xy \right ) \left ( 2x+3y -8xy \right )

\displaystyle \left ( 2x+3y +8xy \right ) \left ( 2x-3y -8xy \right )

\displaystyle \left ( 2x+3y +8xy \right ) \left ( 2x-3y -8xy \right )

\displaystyle \left ( 2x-3y +8xy \right ) \left ( 2x-3y -8xy \right )

\displaystyle \left ( 2x-3y -8xy \right )^{2}

Correct answer:

\displaystyle \left ( 2x-3y +8xy \right ) \left ( 2x-3y -8xy \right )

Explanation:

\displaystyle 4x^{2}-12xy +9y^{2} - 64x^{2}y^{2} can be grouped as follows:

\displaystyle \left (4x^{2}-12xy +9y^{2} \right ) - 64x^{2}y^{2}

The first three terms form a perfect square trinomial, since \displaystyle 2\cdot \sqrt{4x^{2} } \cdot \sqrt { 9y^{2}} = 2 \cdot 2x \cdot 3y = 12xy

\displaystyle 4x^{2}-12xy +9y^{2} = \left ( 2x - 3y\right )^{2}, so

\displaystyle \left (4x^{2}-12xy +9y^{2} \right ) - 64x^{2}y^{2}

\displaystyle = \left ( 2x - 3y\right )^{2} - 8 ^{2}x^{2}y^{2}

\displaystyle = \left ( 2x - 3y\right )^{2} - \left ( 8 xy \right ) ^{2}

Now use the dfference of squares pattern:

\displaystyle = \left [ \left ( 2x - 3y \right ) + 8 xy \right ] \left [ \left ( 2x - 3y \right ) - 8 xy \right ]

\displaystyle = \left ( 2x - 3y + 8 xy \right ) \left ( 2x - 3y - 8 xy \right )

Example Question #11 : Solving By Factoring

Solve for \displaystyle x when \displaystyle f(x)=0.

\displaystyle f(x)=x^2+14x+49

Possible Answers:

\displaystyle x=49

\displaystyle x=14

\displaystyle x=7

\displaystyle x=-7

Correct answer:

\displaystyle x=-7

Explanation:

\displaystyle f(x)=x^2+14x+49

\displaystyle 0=x^2+14x+49

\displaystyle 0=(x+7)(x+7)

\displaystyle x+7=0

\displaystyle x=-7

Example Question #411 : Algebra

Solve for \displaystyle x when \displaystyle f(x)=0.

\displaystyle f(x)=x^2+x-2

Possible Answers:

\displaystyle x=-2 and \displaystyle x=1

\displaystyle x=-2 and \displaystyle x=-1

\displaystyle x=2 and \displaystyle x=1

\displaystyle x=2 and \displaystyle x=-1

Correct answer:

\displaystyle x=-2 and \displaystyle x=1

Explanation:

\displaystyle f(x)=x^2+x-2

\displaystyle 0=x^2+x-2

\displaystyle 0=(x+2)(x-1)

\displaystyle x+2=0 and \displaystyle x-1=0

\displaystyle x=-2 and \displaystyle x=1

 

Example Question #411 : Algebra

Solve for \displaystyle x:

 \displaystyle x^2-8x-9=0

Possible Answers:

\displaystyle x=-9 and \displaystyle x=1

\displaystyle x=9 and \displaystyle x=1

 

\displaystyle x=9 and \displaystyle x=-1

\displaystyle x=-9 and \displaystyle x=-1

Correct answer:

\displaystyle x=9 and \displaystyle x=-1

Explanation:

\displaystyle x^2-8x-9=0

\displaystyle (x-9)(x+1)=0

\displaystyle x-9=0 and \displaystyle x+1=0

\displaystyle x=9 and \displaystyle x=-1

 

Example Question #11 : Understanding Factoring

Factor the expression completely:

\displaystyle 625x^{4} - 450x^{2} + 81

Possible Answers:

\displaystyle (5x-3)^{4}

\displaystyle (5x+3)^{2}(5x-3)^{2}

\displaystyle (25x^{2}-15x+9)(5x+3)^{2}

\displaystyle (25x^{2}+9)(5x-3)^{2}

\displaystyle (25x^{2}-15x+9)(5x-3)^{2}

Correct answer:

\displaystyle (5x+3)^{2}(5x-3)^{2}

Explanation:

The expression is a perfect square trinomial, as the three terms have the following relationship:

\displaystyle 625x^{4} =\left ( 25x ^{2} \right ) ^{2}

\displaystyle 81 = 9 ^{2}

\displaystyle 450x^{2} = 2 \cdot 25x^{2} \cdot 9

\displaystyle 625x^{4} - 450x^{2} + 81= \left ( 25x ^{2} \right ) ^{2} - 2 \cdot 25x^{2} \cdot 9 + 9 ^{2}

We can factor this expression by substituting \displaystyle A = 25x ^{2}, B = 9 into the following pattern:

\displaystyle A^{2} - 2AB + B^{2} = (A-B)^{2}

\displaystyle \left ( 25x ^{2} \right ) ^{2} - 2 \cdot 25x^{2} \cdot 9 + 9 ^{2} =(25x ^{2}-9)^{2}

We can factor further by noting that \displaystyle 25x ^{2}-9 = (5x)^{2} - 3^{2}, the difference of squares, and subsequently, factoring this as the product of a sum and a difference.

\displaystyle 625x^{4} - 450x^{2} + 81=(25x ^{2}-9)^{2} = \left [ (5x+3)(5x-3) \right ]^{2}

or 

\displaystyle 625x^{4} - 450x^{2} + 81= (5x+3)^{2}(5x-3)^{2}

Example Question #421 : Algebra

If \displaystyle 5(a^{3}+3a^{2}b+3ab^{2}+b^{3})=40 what is \displaystyle a+b?

Possible Answers:

\displaystyle 8

\displaystyle \frac{40}{3}

\displaystyle 4

\displaystyle 2

Correct answer:

\displaystyle 2

Explanation:

Note that \displaystyle a^{3}+3a^{2}b+3ab^{2}+b^{3} = (a+b)^{3}

Therefore \displaystyle 5(a^{3}+3a^{2}b+3ab^{2}+b^{3})=40 is equivalent to:

 \displaystyle 5(a+b)^{3}=40 \displaystyle \Leftrightarrow (a+b)^{3}=40/5 = 8 \Leftrightarrow a+b = 2

Example Question #11 : Solving By Factoring

Solve for \displaystyle x;

 

\displaystyle \frac{x^3-x}{x^3+6x^2+5x}=5

Possible Answers:

\displaystyle 12

None of the other answers

\displaystyle -12/5

\displaystyle -5

\displaystyle -10

Correct answer:

None of the other answers

Explanation:

The correct answer is \displaystyle -13/2. Our work proceeds as follows:

 

\displaystyle \frac{x^3-x}{x^3+6x^2+5x}=5

\displaystyle \frac{(x^2-1)(x)}{(x^2+6x+5)(x)} =5   (Factor an \displaystyle x out of the numerator and denominator)

\displaystyle \frac{(x+1)(x-1)(x)}{(x+1)(x+5)(x)} = 5 (Factor the quadratic polynomials)

\displaystyle \frac{x-1}{x+5} =5 (Cancel common terms)

\displaystyle x-1 = 5(x+5) (Multiply by \displaystyle x+5 to both sides)

\displaystyle x-1 = 5x +25   (Distribute the \displaystyle 5)

\displaystyle -26 = 4x (Simplify and solve)

\displaystyle \frac{-13}{2} = x

Example Question #1502 : Problem Solving Questions

Solve for \displaystyle x by factoring and using the zero product property.

\displaystyle 3x^2-74x-25=0

Possible Answers:

\displaystyle x=-1, x=\frac{25}{3}

\displaystyle x=-\frac{1}{3}, x=25

\displaystyle x=\frac{1}{3},x=-25

\displaystyle x=-5, x=\frac{5}{3}

Correct answer:

\displaystyle x=-\frac{1}{3}, x=25

Explanation:

In order to solve for \displaystyle x we must first factor: 

\displaystyle 3x^2-74x-25=0

\displaystyle (3x+1)(x-25)=0

The zero product property states that if \displaystyle xy=0 then \displaystyle x=0 or \displaystyle y=0 (or both).

Our two equations are then:

 \displaystyle (3x+1)=0, (x-25)=0

Solving for \displaystyle x in each leaves us with:

\displaystyle 3x+1=0

\displaystyle 3x=-1

\displaystyle x=-\frac{1}{3}

and 

\displaystyle x-25=0

\displaystyle x=25

Example Question #1501 : Problem Solving Questions

Find the roots of the following function:

\displaystyle f(x)=x^2-3x-18

Possible Answers:

\displaystyle x=-9,x=2

\displaystyle x=-6,x=3

\displaystyle x=-3,x=6

\displaystyle x=-2,x=9

\displaystyle x=-1,x=18

Correct answer:

\displaystyle x=-3,x=6

Explanation:

The roots of a function are the points at which it crosses the x axis, so at these points the value of y, or f(x), is 0. This gives us:

\displaystyle x^2-3x-18=0

So we will have to factor the polynomial in order to solve for the x values at which the function is equal to 0. We need two factors whose product is -18 and whose sum is -3. If we think about our options, 2 and 9 have a product of -18 if one is negative, but there's no way of making these two numbers add up to -3. Next we consider 3 and 6. These numbers have a product of -18 if one is negative, and their sum can also be -3 if the 3 is positive and the 6 is negative. This allows us to write out the following factorization:

\displaystyle x^2-3x-18=0

\displaystyle (x+3)(x-6)=0

\displaystyle x=-3,x=6

Example Question #1506 : Problem Solving Questions

Where does the following function cross the \displaystyle x-axis?

\displaystyle f(x)=x^2-6x+8

Possible Answers:

\displaystyle x=8,-8

\displaystyle x=-2,4

\displaystyle x=2,4

\displaystyle x=-2,-4

\displaystyle x=2,-4

Correct answer:

\displaystyle x=2,4

Explanation:

We could solve this question a variety of ways. The simplest would be graphing with a calculator, but we will use factoring. 

To begin, set our function equal to \displaystyle 0. We want to find where this function crosses the \displaystyle x-axis—in other words, where \displaystyle y=0.

\displaystyle 0=x^2-6x+8

Next, we need to factor the function into two binomial terms. Remember FOIL/box method? We are essentially doing the reverse here. We are looking for something in the form of \displaystyle (x+a)(x+b)=0.

Recalling a few details will make this easier.

1) \displaystyle a*b must equal positive \displaystyle 8

2) \displaystyle a and \displaystyle b must both be negative, because we get positive \displaystyle 8 when we multiply them and \displaystyle -6 when we add them.

3) \displaystyle a and \displaystyle b must be factors of \displaystyle 8 that add up to \displaystyle -6. List factors of \displaystyle 8: \displaystyle 1, 2, 4, 8. The only pair of those that will add up to \displaystyle 6 are \displaystyle 2 and \displaystyle 4, so our factored form looks like this:

\displaystyle 0=(x-2)(x-4)

Then, due to the zero product property, we know that if \displaystyle x=2 or \displaystyle x=4 one side of the equation will equal \displaystyle 0, and therefore our answers are positive \displaystyle 2 and positive \displaystyle 4.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors