GRE Math : How to find the solution to an equation

Study concepts, example questions & explanations for GRE Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #52 : How To Find The Solution To An Equation

Pets Plus makes bird houses.  Their monthly fixed expenses are $750.  The cost for each bird house is $15.  The bird houses sell for $40.

If Pets Plus sells 50 bird houses, what is the profit?

Possible Answers:

\$500

\$250

\$300

\$750

\$625

Correct answer:

\$500

Explanation:

Let x = the number of birdhouses sold each month.

Revenue=40x

Costs=15x+750

Profit = Revenue-Costs 

=40x-15x-750 

=25x-750

Substituting in 50 for x gives an answer of 500, so the profit on 50 birdhouses is $500.

Example Question #53 : How To Find The Solution To An Equation

George is three times older than Joey.  The sum of their ages is 16.  What is the product of their ages?

Possible Answers:

Correct answer:

Explanation:

Let  = Joey's age and  = George's age.

Then the equation to solve becomes .

Therefore, Joey is 4 years old and George is 12 years old, so the product of their ages is 48.

Example Question #141 : Equations / Inequalities

Three consecutive even numbers add to 42.  What is the middle number?

Possible Answers:

10

18

14

12

16

Correct answer:

14

Explanation:

Let x = 1st even number, x+2 = 2nd even number, and x+4 = 3rd even number.

Then the equation to solve becomes x+(x+2)+(x+4)=42.

3x+6=42

Thus x=12,x+2=14,\ and\ x+4=16, so the middle number is 14.

Example Question #142 : Equations / Inequalities

Consider the following equation:

Which of the following must be true?

Possible Answers:

Correct answer:

Explanation:

The quantity inside the absolute value brackets must equal either  or , depending on whether the quantity inside the brackets is positive or negative. We therefore have two seperate equations:

To solve the first equation, add 9 to both sides:

Subtract  from both sides:

This is the first solution. Now let's look at the second equation. The distributive law gives us:

Add 9 to both sides:

Add  to both sides:

Divide both sides by 3:

Therefore, is either 4 or 6. 

Statement  does NOT have to be true because  can also equal 4.

Statement  must be true because both 4 and 6 are positive .

Finally, statement  always holds because 4 and 6 are both even. 

Example Question #51 : Equations / Inequalities

If

,

then 

Possible Answers:

Correct answer:

Explanation:

Divide both sides by 300 to get .  Subtract 7 and divide by two to get .

Example Question #94 : How To Find The Solution To An Equation

If b – 3 = a, then (a – b)2 =

Possible Answers:

–9

–3

The answer cannot be determined from the given information.

9

3

Correct answer:

9

Explanation:

The quantity can be regrouped to be –3 = a – b.  Thus, (a – b)2 = (–3)2 = 9.

Tired of practice problems?

Try live online GRE prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors