GRE Math : Plane Geometry

Study concepts, example questions & explanations for GRE Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find An Angle In A Pentagon

In a five-sided polygon, one angle measures \displaystyle 105^\circ. What are the possible measurements of the other angles?

Possible Answers:

\displaystyle 105, 105, 105, 110

\displaystyle 120, 115, 95, 105

\displaystyle 115, 95, 110, 120

\displaystyle 145, 155, 160, 155

\displaystyle 160, 160, 150, 140

Correct answer:

\displaystyle 120, 115, 95, 105

Explanation:

To find the sum of the interior angles of any polygon, use the formula \displaystyle (n-2)\cdot 180, where n represents the number of sides of a polygon.

In this case:

\displaystyle (5-2)\cdot 180=540

The sum of the interior angles will be 540. Go through each answer choice and see which one adds up to 540 (including the original angle given in the problem).

The only one that does is 120, 115, 95, 105 and the original angle of 105.

Example Question #51 : Geometry

In a particular heptagon (a seven-sided polygon) the sum of four equal interior angles, each equal to \displaystyle a degrees, is equivalent to the sum of the remaining three interior angles.

Quantity A: \displaystyle a

Quantity B: \displaystyle 110

Possible Answers:

The two quantities are equal.

Quantity B is greater

The relationship cannot be determined.

Quantity A is greater.

Correct answer:

Quantity A is greater.

Explanation:

The sum of interior angles in a heptagon is \displaystyle 900 degrees. Note that to find the sum of interior angles of any polygon, it is given by the formula:

\displaystyle (s-2)180 degrees, where \displaystyle s is the number of sides of the polygon.

Three interior angles (call them \displaystyle b,c,d)  are unknown, but we are told that the sum of them is equal to the sum of four other equivalent angles (which we'll designate \displaystyle a):

\displaystyle 4a=b+c+d

Further more, all of these angles must sum up to \displaystyle 900 degrees:

\displaystyle 4a+b+c+d=900

We may not be able to find \displaystyle b\displaystyle c, or \displaystyle d, indvidually, but the problem does not call for that, and we need only use their relation to \displaystyle a, as stated in the first equation with them. Utilizing this in the second, we find:

\displaystyle 4a+4a=900

\displaystyle a=\frac{900}{8}=112.5

Example Question #3 : How To Find An Angle In A Pentagon

Pentagon2

What is the value of \displaystyle a in the figure above?

Possible Answers:

\displaystyle 97.5

\displaystyle 210

\displaystyle 195

\displaystyle 105

Correct answer:

\displaystyle 97.5

Explanation:

Always begin working through problems like this by filling in all available information. We know that we can fill in two of the angles, giving us the following figure:

Pentagon2 2

Now, we know that for any polygon, the total number of degrees in the figure can be calculated by the equation:

\displaystyle d = 180 *(s-2), where \displaystyle s is the number of sides.

Thus, for our figure, we have:

\displaystyle d = 180 * 3 = 540

Based on this, we know:

\displaystyle 540 = 110+50 - a + 135 + a + 50 + 2a

Simplifying, we get:

\displaystyle 540 = 345 + 2a

Solving for \displaystyle a, we get:

\displaystyle 195 = 2a or \displaystyle a = 97.5

Example Question #1 : How To Find An Angle In A Pentagon

Pentagon1

Quantity A: The measure of the largest angle in the figure above.

Quantity B: \displaystyle 120

Which of the following is true?

Possible Answers:

The two quantities are equal.

Quantity A is larger.

Quantity B is larger.

The relationship cannot be determined.

Correct answer:

Quantity A is larger.

Explanation:

Pentagon1

To begin, recall that the total degrees in any figure can be calculated by:

\displaystyle d = 180 * (s-2), where \displaystyle s represents the total number of sides. Thus, we know for our figure that:

\displaystyle d = 3*180 = 540

Now, based on our figure, we can make the equation:

\displaystyle a+2a+3a+120+80 = 540

Simplifying, we get:

\displaystyle 6a = 340 or \displaystyle a = 56.6666666666666....

This means that \displaystyle 3a is \displaystyle 170. Quantity A is larger.

Example Question #1 : Triangles

What is the perimeter of an isosceles triangle given that the sides 5 units long and half of the base measures to 4 units?

Possible Answers:
12
18
14
20
32
Correct answer: 18
Explanation:

The base of the triangle is 4 + 4 = 8 so the total perimeter is 5 + 5 + 8 = 18.

Example Question #52 : Geometry

An acute Isosceles triangle has two sides with length \displaystyle a and one side length \displaystyle b. The length of side \displaystyle \small a= \displaystyle \small \frac{3}{9} ft. If the length of \displaystyle \small b= half the length of side \displaystyle \small a, what is the perimeter of the triangle? 

Possible Answers:

\displaystyle \small \frac{2}{6} foot

\displaystyle \small \frac{4}{6} foot

\displaystyle \small 1 foot

\displaystyle \small 10 inches

\displaystyle \small 6 inches

Correct answer:

\displaystyle \small 10 inches

Explanation:

This Isosceles triangle has two sides with a length of \displaystyle \small \frac{3}{9} foot and one side length that is half of the length of the two equivalent sides. 

To find the missing side, double the value of side \displaystyle \small a's denominator:

\displaystyle \small \frac{3}{9}=\frac{1}{3}. Thus, half of \displaystyle \small \frac{1}{3}=\frac{1}{6}.

Therefore, this triangle has two sides with lengths of \displaystyle \small \frac{1}{3} and one side length of \displaystyle \small \frac{1}{6}

To find the perimeter, apply the formula: 

\displaystyle \small p=2a+b

\displaystyle \small p=\frac{1}{3}+\frac{1}{3}+\frac{1}{6}

\displaystyle \small p=\frac{2}{6}+\frac{2}{6}+\frac{1}{6}=\frac{5}{6}=\frac{10}{12} foot \displaystyle \small = 10 inches


Example Question #52 : Geometry

An acute Isosceles triangle has two sides with length \displaystyle a and one side length \displaystyle b. The length of side \displaystyle \small a= \displaystyle \small 13. If the length of \displaystyle \small b= half the length of side \displaystyle \small a, what is the perimeter of the triangle? 

Possible Answers:

\displaystyle \small 34

\displaystyle \small 26

\displaystyle \small 32.5

\displaystyle \small 34.5

\displaystyle \small 26.5

Correct answer:

\displaystyle \small 32.5

Explanation:

To solve this problem apply the formula: \displaystyle \small p=2a+b.

However, first calculate the length of the missing side by: \displaystyle \small 13\div2=6.5.

Thus, the solution is:

\displaystyle \small p=13+13+6.5=32.5

Example Question #2 : Triangles

Isos._cont._gre

Find the perimeter of the acute Isosceles triangle shown above. 

Possible Answers:

\displaystyle \small 120

\displaystyle \small 130

\displaystyle \small 132

\displaystyle \small 133

\displaystyle \small \small 60

Correct answer:

\displaystyle \small 132

Explanation:

To solve this problem apply the formula: \displaystyle \small p=2a+b.

However, first calculate the length of the missing side by:

\displaystyle \small p=2(a)+12

\displaystyle \small a=12\times5=60

\displaystyle \small p=2(60)+12

\displaystyle \small p=120+12=132

Example Question #53 : Geometry

An obtuse Isosceles triangle has two sides with length \displaystyle a and one side length \displaystyle b. The length of side \displaystyle b= \displaystyle \frac{3}{4} ft. If the length of \displaystyle a= half the length of side \displaystyle b, what is the perimeter of the triangle? 

Possible Answers:

\displaystyle 1\frac{1}{2} ft

\displaystyle \frac{12}{4} ft

\displaystyle 1\frac{2}{3} ft

\displaystyle 1\frac{1}{3} ft

Correct answer:

\displaystyle 1\frac{1}{2} ft

Explanation:

By definition, an Isosceles triangle must have two equivalent side lengths. Since we are told that \displaystyle b=\frac{3}{4} ft and that the sides with length \displaystyle a are half the length of side \displaystyle b, find the length of \displaystyle a by: \displaystyle \frac{3}{4}=\frac{6}{8} and half of \displaystyle \frac{6}{8}=\frac{3}{8}. Thus, both of sides with length \displaystyle a must equal \displaystyle \frac{3}{8} ft. 

Now, apply the formula: \displaystyle p=2a+b.

\displaystyle p=\frac{3}{8}+\frac{3}{8}+\frac{6}{8}=\frac{12}{8}

Then, simplify the fraction/convert to mixed number fraction:


\displaystyle \frac{12}{8}=\frac{3}{2}=1\frac{1}{2}
 

Example Question #2 : Triangles

Isos._cont._gre

Find the perimeter of the acute Isosceles triangle shown above. 

Possible Answers:

\displaystyle \small 18

\displaystyle \small \frac{35}{3}

\displaystyle \small 21

\displaystyle \small 27

\displaystyle \small \frac{56}{3}

Correct answer:

\displaystyle \small 21

Explanation:

In order to solve this problem, first find the length of the missing sides. Then apply the formula: \displaystyle \small p=2a+b

Each of the missing sides equal: 

\displaystyle \small a=\frac{7}{3}\times4=\frac{28}{3} 

Then apply the perimeter formula:
\displaystyle \small p=\frac{28}{3}+\frac{28}{3}+\frac{7}{3}=\frac{63}{3}=21

Tired of practice problems?

Try live online GRE prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors