All GMAT Math Resources
Example Questions
Example Question #331 : Geometry
What is the perimeter of ?
(1) The area of the triangle is .
(2) is an equilateral triangle.
Each statement alone is sufficient
Statement 2 alone is sufficient
Statement 1 alone is sufficient
Statements 1 and 2 taken together are not sufficient
Both statements together are sufficient
Both statements together are sufficient
To find the perimeter we should be able to calculate each sides of the triangle.
Statement 1 tells us the area of the triangle. From this we can't calculate anything else, since we don't know whether the triangle is of a special type.
Statement 2 tells us that the triangle is equilateral. Again This information alone is not sufficient.
Taken together these statements allow us to find the sides of the equilateral triangle ABC. Indeed, the area of an equilateral triangle is given by the following formula: . Where is the area and the length of the side.
Therefore both statements are sufficient.
Example Question #2 : Dsq: Calculating The Perimeter Of An Equilateral Triangle
Find the perimeter of given the following:
I) .
II) Side .
Both statements are needed to answer the question.
Neither statement is sufficient to answer the question. More information is needed.
Either statement is sufficient to answer the question.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Both statements are needed to answer the question.
To find perimeter, we need the side lengths.
I) Gives us the measure of two angles. The given measurement is equal to 60 degrees. This means the last angle is also 60 degrees.
II) Gives us one side length, but because we know from I) that this is an equilateral triangle, we know that all the sides have the same length.
Add up all the sides to get the perimeter.
We need I) and II) to find the perimeter
Example Question #1 : Dsq: Calculating The Perimeter Of An Equilateral Triangle
Given two equilateral triangles and , which, if either, has the greater perimeter?
Statement 1:
Statement 2:
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
The area of an equilateral triangle is given by the formula
,
where is its common sidelength. It follows that the triangle with the greater sidelength has the greater area.
We will let and stand for the common sidelength of and , respectively. The question becomes which, if either, of and is the greater.
Statement 1 alone can be rewritten by multiplying:
Therefore, .
Therefore, , the length of one side of is less than , the length of one side of .
Statement 2 alone can be rewritten as . Again, it follows that .
From either statement alone, it follows that . has the greater sidelength, and, consequently, the greater area.
Example Question #451 : Data Sufficiency Questions
Given two equilateral triangles and , which, if either, has the greater perimeter?
Statement 1:
Statement 2: has greater area than .
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Since an equilateral triangle has three sides of equal measure, the perimeter of an equilateral triangle is three times its sidelength, so the triangle with the greater common sidelength has the greater perimeter.
Statement 1 gives precisely this information; since one side of is longer than one side of , it follows that has the longer perimeter.
Statement 2 gives that has the greater area. Since the area of an equilateral triangle depends only on the common length of its sides, the triangle with the greater area, , must also have the greater sidelength and, consequently, the greater perimeter.
Example Question #5 : Dsq: Calculating The Perimeter Of An Equilateral Triangle
Give the perimeter of equilateral triangle .
Statement 1: is a radius of a circle with area .
Statement 2: is the hypotenuse of a 30-60-90 triangle with area .
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone. To find the radius of a circle with area , use the area formula:
This is also the length of each side of , so its perimeter is three times this, or 24.
Assume Statement 2 alone. If we let be the length of , then, since this the hypotenuse of a 30-60-90 triangle, by the 30-60-90 Theorem, the legs measure and . Half the product of their lengths is equal to area , so
.
As before, the sidelength of is 8 and the perimeter is 24.
Example Question #92 : Triangles
Given two equilateral triangles and , which has the greater perimeter?
Statement 1: is the midpoint of .
Statement 2: is the midpoint of .
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Neither statement alone is enough to determine which triangle has the greater perimeter, as each statement gives information about only one point.
Assume both statements to be true. Since is the segment that connects the endpoints of two sides of , it is a midsegment of the triangle, whose length is half the length of the side of to which it is parallel. Therefore, the sidelength of is half that of , and their perimeters are similarly related. This makes the triangle with the greater perimeter.
Example Question #7 : Dsq: Calculating The Perimeter Of An Equilateral Triangle
Which, if either, of equilateral triangles and , has the greater perimeter?
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Since the perimeter of an equilateral triangle is three times its common sidelength, comparison of the lengths of the sides is all that is necessary to determine which triangle, has the greater perimeter.
If we let and be the common sidelengths of and , respectively, Statement 1 can be rewritten as the equation . This can be expressed as follows:
Therefore, .
Statement 2 can be rewritten as
Once again,
Since either statement alone establishes that , it follows that has the longer sides and, consequently, the greater perimeter of the triangles.
Example Question #6 : Dsq: Calculating The Perimeter Of An Equilateral Triangle
Which, if either, is greater: the perimeter of equilateral triangle or the circumference of a given circle with center ?
Statement 1: The midpoint of is inside the circle.
Statement 2: The midpoint of is on the circle.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
For simplicity's sake, we will assume that has sidelength 1, and, consequently, perimeter 3; these arguments work regardless of the size of the triangle.
We will also need the circumference formula .
Assume Statement 1 alone. Since the midpoint of , which we will call , is inside the circle, the radius of the circle must be greater than . This makes the circumference at least times this, or , which is greater than 3.
Assume Statment 2 alone. Since the circle has as a radius the segment from to the midpoint of the opposite side, it is an altitude of , and the radius is the height of the triangle. By way of the 30-60-90 Theorem, this height is , and the circumference of the circle is times this, or . This is greater than 3.
Either statement alone establishes that the circumference of the circle is greater than 3, the perimeter of .
Example Question #9 : Dsq: Calculating The Perimeter Of An Equilateral Triangle
Given three equilateral triangles , , and , which has the greatest perimeter?
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Assume both statements to be true. From Statement 1, since , it follows that ; since the perimeter of an equilateral triangle is three times the length of one side, it follows that has perimeter greater than . Similarly, from Statement 2, it follows that has perimeter greater than . However, there is no way to determine whether or has the greater perimeter of the two.
Example Question #7 : Dsq: Calculating The Perimeter Of An Equilateral Triangle
Given three equilateral triangles , , and , which has the greatest perimeter?
Statement 1: A circle with diameter equal to the length of can be circumscribed about .
Statement 2: A circle with diameter equal to the length of can be circumscribed about .
BOTH statements TOGETHER are insufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Assume Statement 1 alone, and examine the diagram below, which shows a circle circumscribed about :
The diameter, which is equal to as given by Statement 1, is greater in length than any chord which is not a diameter - and all sides of are non-diameter chords. Therefore, has sides of greater length than , and its perimeter is therefore greater. However, nothing is given about .
If Statement 2 alone is assumed, then, similarly, can be shown to have perimeter greater than that of . But nothing can be determined about .
From the two statements together, however, has a perimeter greater than those of the other two triangles.