Plane Geometry - Math
Card 0 of 1240
A car tire has a radius of 18 inches. When the tire has made 200 revolutions, how far has the car gone in feet?
A car tire has a radius of 18 inches. When the tire has made 200 revolutions, how far has the car gone in feet?
If the radius is 18 inches, the diameter is 3 feet. The circumference of the tire is therefore 3π by C=d(π). After 200 revolutions, the tire and car have gone 3π x 200 = 600π feet.
If the radius is 18 inches, the diameter is 3 feet. The circumference of the tire is therefore 3π by C=d(π). After 200 revolutions, the tire and car have gone 3π x 200 = 600π feet.
Compare your answer with the correct one above
A circle has the equation below. What is the circumference of the circle?
(x – 2)2 + (y + 3)2 = 9
A circle has the equation below. What is the circumference of the circle?
(x – 2)2 + (y + 3)2 = 9
The radius is 3. Yielding a circumference of
.
The radius is 3. Yielding a circumference of .
Compare your answer with the correct one above
The diameter of a circle is defined by the two points (2,5) and (4,6). What is the circumference of this circle?
The diameter of a circle is defined by the two points (2,5) and (4,6). What is the circumference of this circle?
We first must calculate the distance between these two points. Recall that the distance formula is:√((x2 - x1)2 + (y2 - y1)2)
For us, it is therefore: √((4 - 2)2 + (6 - 5)2) = √((2)2 + (1)2) = √(4 + 1) = √5
If d = √5, the circumference of our circle is πd, or π√5.
We first must calculate the distance between these two points. Recall that the distance formula is:√((x2 - x1)2 + (y2 - y1)2)
For us, it is therefore: √((4 - 2)2 + (6 - 5)2) = √((2)2 + (1)2) = √(4 + 1) = √5
If d = √5, the circumference of our circle is πd, or π√5.
Compare your answer with the correct one above
A right triangle has a total perimeter of 12, and the length of its hypotenuse is 5. What is the area of this triangle?
A right triangle has a total perimeter of 12, and the length of its hypotenuse is 5. What is the area of this triangle?
The area of a triangle is denoted by the equation 1/2 b x h.
b stands for the length of the base, and h stands for the height.
Here we are told that the perimeter (total length of all three sides) is 12, and the hypotenuse (the side that is neither the height nor the base) is 5 units long.
So, 12-5 = 7 for the total perimeter of the base and height.
7 does not divide cleanly by two, but it does break down into 3 and 4,
and 1/2 (3x4) yields 6.
Another way to solve this would be if you recall your rules for right triangles, one of the very basic ones is the 3,4,5 triangle, which is exactly what we have here
The area of a triangle is denoted by the equation 1/2 b x h.
b stands for the length of the base, and h stands for the height.
Here we are told that the perimeter (total length of all three sides) is 12, and the hypotenuse (the side that is neither the height nor the base) is 5 units long.
So, 12-5 = 7 for the total perimeter of the base and height.
7 does not divide cleanly by two, but it does break down into 3 and 4,
and 1/2 (3x4) yields 6.
Another way to solve this would be if you recall your rules for right triangles, one of the very basic ones is the 3,4,5 triangle, which is exactly what we have here
Compare your answer with the correct one above
In order to get to work, Jeff leaves home and drives 4 miles due north, then 3 miles due east, followed by 6 miles due north and, finally, 7 miles due east. What is the straight line distance from Jeff’s work to his home?
In order to get to work, Jeff leaves home and drives 4 miles due north, then 3 miles due east, followed by 6 miles due north and, finally, 7 miles due east. What is the straight line distance from Jeff’s work to his home?
Jeff drives a total of 10 miles north and 10 miles east. Using the Pythagorean theorem (a2+b2=c2), the direct route from Jeff’s home to his work can be calculated. 102+102=c2. 200=c2. √200=c. √100√2=c. 10√2=c
Jeff drives a total of 10 miles north and 10 miles east. Using the Pythagorean theorem (a2+b2=c2), the direct route from Jeff’s home to his work can be calculated. 102+102=c2. 200=c2. √200=c. √100√2=c. 10√2=c
Compare your answer with the correct one above
Jim leaves his home and walks 10 minutes due west and 5 minutes due south. If Jim could walk a straight line from his current position back to his house, how far, in minutes, is Jim from home?
Jim leaves his home and walks 10 minutes due west and 5 minutes due south. If Jim could walk a straight line from his current position back to his house, how far, in minutes, is Jim from home?
By using Pythagorean Theorem, we can solve for the distance “as the crow flies” from Jim to his home:
102 + 52 = _x_2
100 + 25 = _x_2
√125 = x, but we still need to factor the square root
√125 = √25*5, and since the √25 = 5, we can move that outside of the radical, so
5√5= x
By using Pythagorean Theorem, we can solve for the distance “as the crow flies” from Jim to his home:
102 + 52 = _x_2
100 + 25 = _x_2
√125 = x, but we still need to factor the square root
√125 = √25*5, and since the √25 = 5, we can move that outside of the radical, so
5√5= x
Compare your answer with the correct one above
What is the circumference of a circle with a radius of 4?
What is the circumference of a circle with a radius of 4?
The equation for the circumference of a circle is
, so by substituting the given radius into the equation, we get
.
The equation for the circumference of a circle is , so by substituting the given radius into the equation, we get
.
Compare your answer with the correct one above
The diameter of a circle increases by 100 percent. If the original area is 16π, what is the new area of the circle?
The diameter of a circle increases by 100 percent. If the original area is 16π, what is the new area of the circle?
The original radius would be 4, making the new radius 8 and by the area of a circle (A=π(r)2) the new area would be 64π.
The original radius would be 4, making the new radius 8 and by the area of a circle (A=π(r)2) the new area would be 64π.
Compare your answer with the correct one above
Two equal circles are cut out of a rectangular sheet of paper with the dimensions 10 by 20. The circles were made to have the greatest possible diameter. What is the approximate area of the paper after the two circles have been cut out?

Two equal circles are cut out of a rectangular sheet of paper with the dimensions 10 by 20. The circles were made to have the greatest possible diameter. What is the approximate area of the paper after the two circles have been cut out?
The length of 20 represents the diameters of both circles. Each circle has a diameter of 10 and since radius is half of the diameter, each circle has a radius of 5. The area of a circle is A = πr2 . The area of one circle is 25π. The area of both circles is 50π. The area of the rectangle is (10)(20) = 200. 200 - 50π gives you the area of the paper after the two circles have been cut out. π is about 3.14, so 200 – 50(3.14) = 43.
The length of 20 represents the diameters of both circles. Each circle has a diameter of 10 and since radius is half of the diameter, each circle has a radius of 5. The area of a circle is A = πr2 . The area of one circle is 25π. The area of both circles is 50π. The area of the rectangle is (10)(20) = 200. 200 - 50π gives you the area of the paper after the two circles have been cut out. π is about 3.14, so 200 – 50(3.14) = 43.
Compare your answer with the correct one above
If one of the short sides of a 45-45-90 triangle equals 5, how long is the hypotenuse?
If one of the short sides of a 45-45-90 triangle equals 5, how long is the hypotenuse?
Using the Pythagorean theorem, _x_2 + _y_2 = _h_2. And since it is a 45-45-90 triangle the two short sides are equal. Therefore 52 + 52 = _h_2 . Multiplied out 25 + 25 = _h_2.
Therefore _h_2 = 50, so h = √50 = √2 * √25 or 5√2.
Using the Pythagorean theorem, _x_2 + _y_2 = _h_2. And since it is a 45-45-90 triangle the two short sides are equal. Therefore 52 + 52 = _h_2 . Multiplied out 25 + 25 = _h_2.
Therefore _h_2 = 50, so h = √50 = √2 * √25 or 5√2.
Compare your answer with the correct one above

If the length of CB is 6 and the angle C measures 45º, what is the length of AC in the given right triangle?
If the length of CB is 6 and the angle C measures 45º, what is the length of AC in the given right triangle?
Pythagorean Theorum
AB2 + BC2 = AC2
If C is 45º then A is 45º, therefore AB = BC
AB2 + BC2 = AC2
62 + 62 = AC2
2*62 = AC2
AC = √(2*62) = 6√2
Pythagorean Theorum
AB2 + BC2 = AC2
If C is 45º then A is 45º, therefore AB = BC
AB2 + BC2 = AC2
62 + 62 = AC2
2*62 = AC2
AC = √(2*62) = 6√2
Compare your answer with the correct one above
A circle with an area of 13_π_ in2 is centered at point C. What is the circumference of this circle?
A circle with an area of 13_π_ in2 is centered at point C. What is the circumference of this circle?
The formula for the area of a circle is A = _πr_2.
We are given the area, and by substitution we know that 13_π_ = _πr_2.
We divide out the π and are left with 13 = _r_2.
We take the square root of r to find that r = √13.
We find the circumference of the circle with the formula C = 2_πr_.
We then plug in our values to find C = 2√13_π_.
The formula for the area of a circle is A = _πr_2.
We are given the area, and by substitution we know that 13_π_ = _πr_2.
We divide out the π and are left with 13 = _r_2.
We take the square root of r to find that r = √13.
We find the circumference of the circle with the formula C = 2_πr_.
We then plug in our values to find C = 2√13_π_.
Compare your answer with the correct one above
A 6 by 8 rectangle is inscribed in a circle. What is the circumference of the circle?
A 6 by 8 rectangle is inscribed in a circle. What is the circumference of the circle?
First you must draw the diagram. The diagonal of the rectangle is also the diameter of the circle. The diagonal is the hypotenuse of a multiple of 2 of a 3,4,5 triangle, and therefore is 10.
Circumference = π * diameter = 10_π_.
First you must draw the diagram. The diagonal of the rectangle is also the diameter of the circle. The diagonal is the hypotenuse of a multiple of 2 of a 3,4,5 triangle, and therefore is 10.
Circumference = π * diameter = 10_π_.
Compare your answer with the correct one above
Ashley has a square room in her apartment that measures 81 square feet. What is the circumference of the largest circular area rug that she can fit in the space?
Ashley has a square room in her apartment that measures 81 square feet. What is the circumference of the largest circular area rug that she can fit in the space?
In order to solve this question, first calculate the length of each side of the room.



The length of each side of the room is also equal to the length of the diameter of the largest circular rug that can fit in the room. Since
, the circumference is simply

In order to solve this question, first calculate the length of each side of the room.
The length of each side of the room is also equal to the length of the diameter of the largest circular rug that can fit in the room. Since , the circumference is simply
Compare your answer with the correct one above
A gardener wants to build a fence around their garden shown below. How many feet of fencing will they need, if the length of the rectangular side is 12 and the width is 8?

A gardener wants to build a fence around their garden shown below. How many feet of fencing will they need, if the length of the rectangular side is 12 and the width is 8?
The shape of the garden consists of a rectangle and two semi-circles. Since they are building a fence we need to find the perimeter. The perimeter of the length of the rectangle is 24. The perimeter or circumference of the circle can be found using the equation C=2π(r), where r= the radius of the circle. Since we have two semi-circles we can find the circumference of one whole circle with a radius of 4, which would be 8π.
The shape of the garden consists of a rectangle and two semi-circles. Since they are building a fence we need to find the perimeter. The perimeter of the length of the rectangle is 24. The perimeter or circumference of the circle can be found using the equation C=2π(r), where r= the radius of the circle. Since we have two semi-circles we can find the circumference of one whole circle with a radius of 4, which would be 8π.
Compare your answer with the correct one above
If a circle has an area of
, what is the circumference of the circle?
If a circle has an area of , what is the circumference of the circle?
The formula for the area of a circle is πr2. For this particular circle, the area is 81π, so 81π = πr2. Divide both sides by π and we are left with r2=81. Take the square root of both sides to find r=9. The formula for the circumference of the circle is 2πr = 2π(9) = 18π. The correct answer is 18π.
The formula for the area of a circle is πr2. For this particular circle, the area is 81π, so 81π = πr2. Divide both sides by π and we are left with r2=81. Take the square root of both sides to find r=9. The formula for the circumference of the circle is 2πr = 2π(9) = 18π. The correct answer is 18π.
Compare your answer with the correct one above
A circle has radius
. What is the circumference, rounded to the nearest tenth?

A circle has radius . What is the circumference, rounded to the nearest tenth?
Circumference is given by the equation
. We can use this equation with the given radius, 4.2, to solve for the circumference.

Circumference is given by the equation . We can use this equation with the given radius, 4.2, to solve for the circumference.
Compare your answer with the correct one above
What is the circumference of a circle with a radius of 12?
What is the circumference of a circle with a radius of 12?
What is the circumference of a circle with a radius of 12?
What is the circumference of a circle with a radius of 12?
To find the circumference of a circle given the radius we must first know the equation for the circumference of a circle which is 
We then plug in the number for the radius into the equation yielding 
We multiply to find the value for the circumference is
.
The answer is
.
To find the circumference of a circle given the radius we must first know the equation for the circumference of a circle which is
We then plug in the number for the radius into the equation yielding
We multiply to find the value for the circumference is .
The answer is .
Compare your answer with the correct one above

Find the circumference of a circle with a radius of
.
Find the circumference of a circle with a radius of .
In order to find the circumference, we will use the formula
.



In order to find the circumference, we will use the formula .
Compare your answer with the correct one above
This figure is a circle with a radius of 3 cm.
What is the circumference of the circle (cm)?
This figure is a circle with a radius of 3 cm.
What is the circumference of the circle (cm)?
In order to find the circumference of a circle (which is the perimeter or distance around the circle), you must double the radius and multiply by pi (
).
In order to find the circumference of a circle (which is the perimeter or distance around the circle), you must double the radius and multiply by pi ().
Compare your answer with the correct one above