Laboratory Practices - GRE
Card 0 of 308
What is the purpose of adding sodium fluoride to a cell lysis buffer?
What is the purpose of adding sodium fluoride to a cell lysis buffer?
Sodium fluoride is a serine/threonine phosphatase inhibitor. This is important to have in a cell lysis buffer if the protein of interest is phosphorylated. The presence of sodium fluoride will prevent the phosphoryl group from being removed by a serine/threonine phosphatase before it can be studied. It is often added to the cell lysis buffer along with sodium vanadate, which is a tyrosine/alkaline phosphatase inhibitor.
Sodium fluoride is a serine/threonine phosphatase inhibitor. This is important to have in a cell lysis buffer if the protein of interest is phosphorylated. The presence of sodium fluoride will prevent the phosphoryl group from being removed by a serine/threonine phosphatase before it can be studied. It is often added to the cell lysis buffer along with sodium vanadate, which is a tyrosine/alkaline phosphatase inhibitor.
Compare your answer with the correct one above
Which of the following techniques would best determine relative protein activity by its ability to bind specific DNA sequences in vitro?
Which of the following techniques would best determine relative protein activity by its ability to bind specific DNA sequences in vitro?
The correct answer is electrophoretic mobility shift assay (EMSA). In an EMSA, specific DNA sequences are radioactively labelled and incubated with either protein lysates or purified proteins. The protein-DNA mixture is then loaded onto a non-denaturing gel to separate the proteins and DNA by size. DNA that is bound by protein will migrate more slowly than unbound DNA, which will migrate quickly. To detect radioactivity, a film is exposed to the gel, developed and interpreted. It is important to remember that the radioactivity is emitted by the DNA and not the protein.
The correct answer is electrophoretic mobility shift assay (EMSA). In an EMSA, specific DNA sequences are radioactively labelled and incubated with either protein lysates or purified proteins. The protein-DNA mixture is then loaded onto a non-denaturing gel to separate the proteins and DNA by size. DNA that is bound by protein will migrate more slowly than unbound DNA, which will migrate quickly. To detect radioactivity, a film is exposed to the gel, developed and interpreted. It is important to remember that the radioactivity is emitted by the DNA and not the protein.
Compare your answer with the correct one above
Two students have cloned a bacterial DNA polymerase into a mammalian expression vector. The students then transfected the vector into human tissue culture cell lines to determine if the DNA polymerase retains its native function in human cells.
What technique is most suitable for the students to use to determine if the DNA polymerase is expressed in human cells?
Two students have cloned a bacterial DNA polymerase into a mammalian expression vector. The students then transfected the vector into human tissue culture cell lines to determine if the DNA polymerase retains its native function in human cells.
What technique is most suitable for the students to use to determine if the DNA polymerase is expressed in human cells?
The correct answer is Western blot. In a Western blot, cell protein lysates are run on a denaturing gel and probed with a specific antibody. The student researchers can detect the existence of the DNA polymerase protein in the cell lysate using a specific antibody to that polymerase.
EMSAs determine a protein's ability to bind a DNA sequence, while electroporation, PCR, and restriction digests are not methods to detect protein expression.
The correct answer is Western blot. In a Western blot, cell protein lysates are run on a denaturing gel and probed with a specific antibody. The student researchers can detect the existence of the DNA polymerase protein in the cell lysate using a specific antibody to that polymerase.
EMSAs determine a protein's ability to bind a DNA sequence, while electroporation, PCR, and restriction digests are not methods to detect protein expression.
Compare your answer with the correct one above
What technique allows scientists to measure gene expression via probe-cDNA hybridization fluorescent intensity?
What technique allows scientists to measure gene expression via probe-cDNA hybridization fluorescent intensity?
The correct answer is DNA microarray. In a DNA microarray, short DNA sequences (probes) are labelled on a microarray chip. Probes for the same gene are clustered in the same area on the array. cDNA from a sample is labelled with a fluorescent dye and washed over the chip. If a certain gene is more highly expressed, its cDNA will bind the respective probes and give a higher intensity than a lower expressed gene.
The correct answer is DNA microarray. In a DNA microarray, short DNA sequences (probes) are labelled on a microarray chip. Probes for the same gene are clustered in the same area on the array. cDNA from a sample is labelled with a fluorescent dye and washed over the chip. If a certain gene is more highly expressed, its cDNA will bind the respective probes and give a higher intensity than a lower expressed gene.
Compare your answer with the correct one above
A student researcher performs indirect immunofluorescence of mammalian cells for a transmembrane protein with an antibody to the C-terminus of the protein. First, the student researcher does not permeabilize cells' plasma membranes and stains with the protein specific antibody. Secondly, the researcher permeabilizes the cells' plasma membranes and stains with the protein specific antibody.
What is the student researcher trying to determine with these two experiments?
A student researcher performs indirect immunofluorescence of mammalian cells for a transmembrane protein with an antibody to the C-terminus of the protein. First, the student researcher does not permeabilize cells' plasma membranes and stains with the protein specific antibody. Secondly, the researcher permeabilizes the cells' plasma membranes and stains with the protein specific antibody.
What is the student researcher trying to determine with these two experiments?
The correct answer is whether the C-terminus of the protein is extracellular or intracellular. This is a very common laboratory technique to determine which terminus of a transmembrane protein is intracellular and extracellular. Since the antibody is specific to the C-terminus of the protein and if the C-terminus of the protein is intracellularly localized, we will only be able to detect the protein if the cells are permeabilized. In cells that are not permeabilized, the antibody will not be able to enter the cells, but permeabilization will allow the antibody to pass through the plasma membrane and bind the C-terminus. If the C-terminus is extracellular, the antibody will bind regardless of permeabilization.
The correct answer is whether the C-terminus of the protein is extracellular or intracellular. This is a very common laboratory technique to determine which terminus of a transmembrane protein is intracellular and extracellular. Since the antibody is specific to the C-terminus of the protein and if the C-terminus of the protein is intracellularly localized, we will only be able to detect the protein if the cells are permeabilized. In cells that are not permeabilized, the antibody will not be able to enter the cells, but permeabilization will allow the antibody to pass through the plasma membrane and bind the C-terminus. If the C-terminus is extracellular, the antibody will bind regardless of permeabilization.
Compare your answer with the correct one above
Which of the following is not a valid method to introduce exogenous DNA into a cell?
Which of the following is not a valid method to introduce exogenous DNA into a cell?
All of the given answers are valid methods to introduce exogenous DNA into a cell. When working with bacteria, transformations are a simple way to introduce plasmid DNA into the cell by chemical competency. Electroporation electrocutes both bacterial and cell culture cells to introduce exogenous DNA. Infection of target cells may also be a viable method if the laboratory is equipped to generate live virus containing exogenous DNA to be introduced. Finally, transfection refers to a process mainly reserved for cell culture that introduces exogenous DNA through liposome fusion (containing DNA) with cell membranes.
All of the given answers are valid methods to introduce exogenous DNA into a cell. When working with bacteria, transformations are a simple way to introduce plasmid DNA into the cell by chemical competency. Electroporation electrocutes both bacterial and cell culture cells to introduce exogenous DNA. Infection of target cells may also be a viable method if the laboratory is equipped to generate live virus containing exogenous DNA to be introduced. Finally, transfection refers to a process mainly reserved for cell culture that introduces exogenous DNA through liposome fusion (containing DNA) with cell membranes.
Compare your answer with the correct one above
Work on the Anopheles mosquito attempting to study the blood digestion process found that over 2,000 genes were upregulated and downregulated through digestion. What technology makes it possible to study expression levels of large number of genes like this?
Work on the Anopheles mosquito attempting to study the blood digestion process found that over 2,000 genes were upregulated and downregulated through digestion. What technology makes it possible to study expression levels of large number of genes like this?
Microarrays allow for the study of expression levels of thousands of genes simultaneously. Although microarrays do not tell you anything about the actual sequence of the genes, they are the only option for studying the expression levels of massive numbers of genes. It is possible to study expression levels using PCR, but not on a large scale.
Microarrays allow for the study of expression levels of thousands of genes simultaneously. Although microarrays do not tell you anything about the actual sequence of the genes, they are the only option for studying the expression levels of massive numbers of genes. It is possible to study expression levels using PCR, but not on a large scale.
Compare your answer with the correct one above
What was the early technique used in molecular genetics to study "alleles" of various enzymes?
What was the early technique used in molecular genetics to study "alleles" of various enzymes?
Running allozyme gels was one of the first methods used in molecular studies of these enzymes that have slightly different functions due to having slightly different genetic codes (alleles). This term refers specifically to enzymatic variation created by genetic variation/alleles.
Running allozyme gels was one of the first methods used in molecular studies of these enzymes that have slightly different functions due to having slightly different genetic codes (alleles). This term refers specifically to enzymatic variation created by genetic variation/alleles.
Compare your answer with the correct one above
What is the purpose of a phenol/chloroform extraction?
What is the purpose of a phenol/chloroform extraction?
The correct answer is to separate proteins and other impurities from DNA or RNA. An extraction by phenol followed by chloroform will separate proteins and other impurities from DNA and RNA (in suspended fraction). Next, depending on the type and concentration of salt used, a researcher can selectively precipitate either DNA or RNA from the mixture with the addition of ethanol. This is a simple method to obtain pure clean ribonucleic acids from impure sources.
The correct answer is to separate proteins and other impurities from DNA or RNA. An extraction by phenol followed by chloroform will separate proteins and other impurities from DNA and RNA (in suspended fraction). Next, depending on the type and concentration of salt used, a researcher can selectively precipitate either DNA or RNA from the mixture with the addition of ethanol. This is a simple method to obtain pure clean ribonucleic acids from impure sources.
Compare your answer with the correct one above
Which of the following techniques most likely utilizes a detergent, such as sodium dodecyl sulfate?
Which of the following techniques most likely utilizes a detergent, such as sodium dodecyl sulfate?
The correct answer is lysis of the plasma membrane. While detergents such as sodium dodecyl sulfate are commonly used in western blots as a protein denaturing agent, it also breaks down the plasma membrane by emulsifying membrane-bound lipids and proteins.
The correct answer is lysis of the plasma membrane. While detergents such as sodium dodecyl sulfate are commonly used in western blots as a protein denaturing agent, it also breaks down the plasma membrane by emulsifying membrane-bound lipids and proteins.
Compare your answer with the correct one above
When performing heat shock transformation of a DNA plasmid into Escherichia coli, what purpose does the heat shock serve?
When performing heat shock transformation of a DNA plasmid into Escherichia coli, what purpose does the heat shock serve?
The correct answer is introduce membrane pores. Escherichia coli grows optimally at 37 degrees Celcius. However, an increase in temperature causes the plasma membrane to become more fluid, introducing small pores through which plasmid DNA can enter into the cell.
The correct answer is introduce membrane pores. Escherichia coli grows optimally at 37 degrees Celcius. However, an increase in temperature causes the plasma membrane to become more fluid, introducing small pores through which plasmid DNA can enter into the cell.
Compare your answer with the correct one above
Two students receive 1 microliter of plasmid DNA that expressed beta-lactamase under a constitutive promoter, and green fluorescent protein (eGFP) under an arabinose inducible promoter.
The students decide to heat shock transform the entire volume of plasmid DNA into chemically competent bacterial cells to ensure that they have enough replicated plasmid for future experiments. The students also transform the same volume of sterile water as a control. They plate their transformations on the following plates:
1. Nutrient agar
2. Nutrient agar plus ampicillin
3. Nutrient agar plus ampicillin and arabinose
The next day, the students observe a lawn of bacteria on each plate for bacterica transformed with the plasmid, with only 1/10 of the bacteria glowing green on plate 3. Additionally, they observe a lawn of bacteria on each plate for the control condition.
Which is most likely the cause of their results?
Two students receive 1 microliter of plasmid DNA that expressed beta-lactamase under a constitutive promoter, and green fluorescent protein (eGFP) under an arabinose inducible promoter.
The students decide to heat shock transform the entire volume of plasmid DNA into chemically competent bacterial cells to ensure that they have enough replicated plasmid for future experiments. The students also transform the same volume of sterile water as a control. They plate their transformations on the following plates:
1. Nutrient agar
2. Nutrient agar plus ampicillin
3. Nutrient agar plus ampicillin and arabinose
The next day, the students observe a lawn of bacteria on each plate for bacterica transformed with the plasmid, with only 1/10 of the bacteria glowing green on plate 3. Additionally, they observe a lawn of bacteria on each plate for the control condition.
Which is most likely the cause of their results?
The correct answer is the ampicillin the nutrient agar plates expired. The plasmid expresses beta-lactamase, an enzyme that degrades ampicillin. Successfully transformed bacteria will be able to grow in the presence of ampicillin, but untransformed bacteria should not grow. Since the bacteria in our control transformation do not have ampicillin resistance conferred by beta-lactamase, we would expect that no growth would be observed on any nutrient agar plates with ampicillin. However, we observe uncontrolled growth on these plates, indicating that the ampicillin has expired and is no longer a viable selectable marker for transformed bacteria.
The correct answer is the ampicillin the nutrient agar plates expired. The plasmid expresses beta-lactamase, an enzyme that degrades ampicillin. Successfully transformed bacteria will be able to grow in the presence of ampicillin, but untransformed bacteria should not grow. Since the bacteria in our control transformation do not have ampicillin resistance conferred by beta-lactamase, we would expect that no growth would be observed on any nutrient agar plates with ampicillin. However, we observe uncontrolled growth on these plates, indicating that the ampicillin has expired and is no longer a viable selectable marker for transformed bacteria.
Compare your answer with the correct one above
When performing a polymerase chain reaction, what is the purpose of the annealing temperature?
When performing a polymerase chain reaction, what is the purpose of the annealing temperature?
The annealing temperature is the optimal temperature at which the primers bind the template DNA sequence. This temperature takes into account several factors: the number of basepairs in the primers, the relative guanine-cytosine content, and their melting point.
The annealing temperature is the optimal temperature at which the primers bind the template DNA sequence. This temperature takes into account several factors: the number of basepairs in the primers, the relative guanine-cytosine content, and their melting point.
Compare your answer with the correct one above
A researcher wants to clone a bacterial gene into a mammalian expression vector for his project. Which of the following most accurately represents the chronological steps the researcher should take in order to successfully obtain the construct?
A researcher wants to clone a bacterial gene into a mammalian expression vector for his project. Which of the following most accurately represents the chronological steps the researcher should take in order to successfully obtain the construct?
None of the answer choices are correct. In order to successfully clone a bacterial gene into a mammalian expression vector, the following must be completed: First, the bacterial gene should be PCR amplified from bacterial cDNA, which contains only exons. Second, the vector backbone should be digested with restriction enzymes to linearize the vector so that the bacterial gene can be inserted at a specifc locus (multiple cloning site). Third, the amplified bacterial gene and the digested vector backbone are ligated together to create the desired expression construct.
None of the answer choices are correct. In order to successfully clone a bacterial gene into a mammalian expression vector, the following must be completed: First, the bacterial gene should be PCR amplified from bacterial cDNA, which contains only exons. Second, the vector backbone should be digested with restriction enzymes to linearize the vector so that the bacterial gene can be inserted at a specifc locus (multiple cloning site). Third, the amplified bacterial gene and the digested vector backbone are ligated together to create the desired expression construct.
Compare your answer with the correct one above
A student researcher wants to amplify a transcription factor gene from humansand clone it into an expression vector. What template should the student use for PCR?
A student researcher wants to amplify a transcription factor gene from humansand clone it into an expression vector. What template should the student use for PCR?
The correct answer is cDNA. Given that this gene most likely has several introns, complementary DNA (cDNA) should be used as a template since it only contains exons. When subcloning a gene into an expression vector, only coding sequence should be present because the transcribed RNA will not be processed like it is in host cells.
The correct answer is cDNA. Given that this gene most likely has several introns, complementary DNA (cDNA) should be used as a template since it only contains exons. When subcloning a gene into an expression vector, only coding sequence should be present because the transcribed RNA will not be processed like it is in host cells.
Compare your answer with the correct one above
Why are plasmids typically used in bacterial cloning and expression as opposed to linear fragments of DNA?
Why are plasmids typically used in bacterial cloning and expression as opposed to linear fragments of DNA?
Plasmids are circular pieces of DNA that are resistant to exonucleic degradation (exonucleases cut from DNA ends). Bacteria harbor native plasmids that replicate independently from their genome and express genes that often confer a survival advantage. Scientists often clone genes into plasmids and express them in a variety of host cells.
Plasmids are circular pieces of DNA that are resistant to exonucleic degradation (exonucleases cut from DNA ends). Bacteria harbor native plasmids that replicate independently from their genome and express genes that often confer a survival advantage. Scientists often clone genes into plasmids and express them in a variety of host cells.
Compare your answer with the correct one above
Which scientist was responsible for the development of, and was the namesake for, the first widely used automated DNA sequencing method?
Which scientist was responsible for the development of, and was the namesake for, the first widely used automated DNA sequencing method?
Frederick Sanger invented the chain termination method of DNA sequencing in 1977, which has been widely used since its invention for short DNA sequences. The method is know as Sanger Sequencing. Leroy Hood was responsible for automating this method, Kary Mullis was the inventor of the polymerase chain reaction to create copies of DNA, E. M. Southern lent his name to another DNA study method called Southerns, and Craig Venter was responsible for other later DNA sequencing methods.
Frederick Sanger invented the chain termination method of DNA sequencing in 1977, which has been widely used since its invention for short DNA sequences. The method is know as Sanger Sequencing. Leroy Hood was responsible for automating this method, Kary Mullis was the inventor of the polymerase chain reaction to create copies of DNA, E. M. Southern lent his name to another DNA study method called Southerns, and Craig Venter was responsible for other later DNA sequencing methods.
Compare your answer with the correct one above
Polymerase chain reaction, or PCR, was developed to create copies of DNA molecules for study. Which of these facts about PCR is false?
Polymerase chain reaction, or PCR, was developed to create copies of DNA molecules for study. Which of these facts about PCR is false?
Polymerase chain reaction requires two, not one, synthesized primer molecules to correctly amplify a DNA molecule into new copies. One primer attaches to each end of your desired DNA segment, and amplification occurs from these sites by polymerase molecules. The other options are all correct facts about PCR.
Polymerase chain reaction requires two, not one, synthesized primer molecules to correctly amplify a DNA molecule into new copies. One primer attaches to each end of your desired DNA segment, and amplification occurs from these sites by polymerase molecules. The other options are all correct facts about PCR.
Compare your answer with the correct one above
Although they are not commonly used for modern genome projects, cosmids were important vectors for moderate length DNA cloning and sequencing. Which vectors could handle larger DNA insert sizes?
I. Bacterial artificial chromosomes (BAC's)
II. Plasmids
III. Yeast artificial chromosomes (YAC's)
Although they are not commonly used for modern genome projects, cosmids were important vectors for moderate length DNA cloning and sequencing. Which vectors could handle larger DNA insert sizes?
I. Bacterial artificial chromosomes (BAC's)
II. Plasmids
III. Yeast artificial chromosomes (YAC's)
Cosmids could handle DNA insert sizes of 25-50kb. BAC's could handle insert sizes of 100-300kb, and YAC's even more. These are still used for tricky genome projects due to this large insert size, like antifreeze protein genes in Arctic fish. Plasmids can generally only handle insert sizes of 5-10kb.
Cosmids could handle DNA insert sizes of 25-50kb. BAC's could handle insert sizes of 100-300kb, and YAC's even more. These are still used for tricky genome projects due to this large insert size, like antifreeze protein genes in Arctic fish. Plasmids can generally only handle insert sizes of 5-10kb.
Compare your answer with the correct one above
What important advance in Sanger chain termination based DNA sequencing technique allowed for vast improvements in sequence data output?
What important advance in Sanger chain termination based DNA sequencing technique allowed for vast improvements in sequence data output?
These were all important advances in improvement of the Sanger technique that increased DNA sequence output. Modification of polymerases allowed quicker thermal cycling reactions and incorporation of manufactured bases with fluorescent tags. Four different fluorescent tags for each base allowed for easy identification of different bases. Lastly, capillary chromatography allowed for huge parallelization of DNA sequencing.
These were all important advances in improvement of the Sanger technique that increased DNA sequence output. Modification of polymerases allowed quicker thermal cycling reactions and incorporation of manufactured bases with fluorescent tags. Four different fluorescent tags for each base allowed for easy identification of different bases. Lastly, capillary chromatography allowed for huge parallelization of DNA sequencing.
Compare your answer with the correct one above