Evolution and Mutations - GRE
Card 0 of 120
Which of the following is an example of convergent evolution?
Which of the following is an example of convergent evolution?
Convergent evolution is the phenomenon by which two separate species evolve a shared trait. A classic example of this is that both birds and bats have evolved wings, but do not share a common ancestor prior to the development of this trait. Birds and bats developed their wings separately through completely unique mechanisms.
A population diverging into two separate species while residing in the same area describes the phenomenon of sympatric speciation. A species regaining a trait is an example of evolutionary reversal.
Convergent evolution is the phenomenon by which two separate species evolve a shared trait. A classic example of this is that both birds and bats have evolved wings, but do not share a common ancestor prior to the development of this trait. Birds and bats developed their wings separately through completely unique mechanisms.
A population diverging into two separate species while residing in the same area describes the phenomenon of sympatric speciation. A species regaining a trait is an example of evolutionary reversal.
Compare your answer with the correct one above
An example of is the speciation of Darwin's finches through the accumulation of many small, distinct traits.
An example of is the speciation of Darwin's finches through the accumulation of many small, distinct traits.
Convergent evolution is the phenomenon by which two species independently evolve a similar trait. An excellent example is the evolution of flight/wings in birds and bats, which do not share a common ancestor. Parsimony is a principle that guides scientific explanation toward simple terms, rather than eleborate principles. By parsimonious thinking, the simplest explanation is also the most likely to be true. Artificial selection is a form of evolution in which organisms are selected and bred for beneficial traits that would not necessarily be selected for in nature. Dog breeding and the production of numerous types of produce and grains are subject to artificial selection by humans (this is different from genetic modification).
Divergent evolution describes the accumulation of distinct traits that can lead to speciation events. A large population consists of a single ancestor species. Over time, different groups of the population come to inhabit different niches and develop traits for specialized inhabitance of that niche. As these changes accumulate, the population slowly develops distinct groups. When these groups can no longer reproduce due to some sexual barrier, a speciation event has occurred. This process aligns with the theory of evolution for Darwin's finches.
Convergent evolution is the phenomenon by which two species independently evolve a similar trait. An excellent example is the evolution of flight/wings in birds and bats, which do not share a common ancestor. Parsimony is a principle that guides scientific explanation toward simple terms, rather than eleborate principles. By parsimonious thinking, the simplest explanation is also the most likely to be true. Artificial selection is a form of evolution in which organisms are selected and bred for beneficial traits that would not necessarily be selected for in nature. Dog breeding and the production of numerous types of produce and grains are subject to artificial selection by humans (this is different from genetic modification).
Divergent evolution describes the accumulation of distinct traits that can lead to speciation events. A large population consists of a single ancestor species. Over time, different groups of the population come to inhabit different niches and develop traits for specialized inhabitance of that niche. As these changes accumulate, the population slowly develops distinct groups. When these groups can no longer reproduce due to some sexual barrier, a speciation event has occurred. This process aligns with the theory of evolution for Darwin's finches.
Compare your answer with the correct one above
Which type of mutation creates a premature stop codon in the mRNA?
Which type of mutation creates a premature stop codon in the mRNA?
While a missense mutation involves substituting a base pair, resulting in a new amino acid, a nonsense mutation takes place when the new substituted codon is a stop codon. This causes the protein to stop being translated prematurely. Because of their impact on protein production, nonsense mutations very commonly prevent the formation of a functional protein.
Silent mutations result in no change in primary protein structure. Due to the degeneracy of the genetic code, a mutation can occur without changing the identity of the amino acid recruited during translation. A frameshift mutation results in a shift in the codon reading frame, severely altering the primary protein structure and often resulting in a truncated protein.
While a missense mutation involves substituting a base pair, resulting in a new amino acid, a nonsense mutation takes place when the new substituted codon is a stop codon. This causes the protein to stop being translated prematurely. Because of their impact on protein production, nonsense mutations very commonly prevent the formation of a functional protein.
Silent mutations result in no change in primary protein structure. Due to the degeneracy of the genetic code, a mutation can occur without changing the identity of the amino acid recruited during translation. A frameshift mutation results in a shift in the codon reading frame, severely altering the primary protein structure and often resulting in a truncated protein.
Compare your answer with the correct one above
A mutation always results in the ribosome encountering a premature stop codon.
A mutation always results in the ribosome encountering a premature stop codon.
Nonsense mutations are the name specifically given to mutations that cause the ribosome to encounter a premature stop codon and terminate translation early. A point mutation causes the transcription of a stop codon by changing the DNA transcript transcribe to the mRNA stop codons UAG, UAA, or UGA. Placement of this codon in the transcript will interrupt translation.
Missense mutations are a type of mutation that result in the inclusion of a different amino acid than the wild type protein. Frameshift mutations result in a change to the codon reading frame, and are typically caused by deletion or insertion mutations. Frameshift mutations have the most dramatic and detrimental effect on proteins. Deletion mutations result from removal of one or more base pairs.
Nonsense mutations are the name specifically given to mutations that cause the ribosome to encounter a premature stop codon and terminate translation early. A point mutation causes the transcription of a stop codon by changing the DNA transcript transcribe to the mRNA stop codons UAG, UAA, or UGA. Placement of this codon in the transcript will interrupt translation.
Missense mutations are a type of mutation that result in the inclusion of a different amino acid than the wild type protein. Frameshift mutations result in a change to the codon reading frame, and are typically caused by deletion or insertion mutations. Frameshift mutations have the most dramatic and detrimental effect on proteins. Deletion mutations result from removal of one or more base pairs.
Compare your answer with the correct one above
Sickle cell anemia is a disorder caused by the alteration of one amino acid in hemoglobin. Based on this, what kind of mutation causes sickle cell anemia?
Sickle cell anemia is a disorder caused by the alteration of one amino acid in hemoglobin. Based on this, what kind of mutation causes sickle cell anemia?
When only one amino acid is changed in a polypeptide, it is commonly caused by a point mutation, where one base pair has been changed. Silent, missense, and nonsense mutations can all be caused by a point mutation. Since the amino acid sequence has been changed, this is an example of a missense mutation. A silent mutation would not change the amino acid sequence, and a nonsense mutation would result in a premature stop codon during translation.
When only one amino acid is changed in a polypeptide, it is commonly caused by a point mutation, where one base pair has been changed. Silent, missense, and nonsense mutations can all be caused by a point mutation. Since the amino acid sequence has been changed, this is an example of a missense mutation. A silent mutation would not change the amino acid sequence, and a nonsense mutation would result in a premature stop codon during translation.
Compare your answer with the correct one above
A certain class of protein is found to exist in several different species. The amino acid sequence of this protein is compared between a large number of species. The greatest number of amino acid differences will be found between species of different .
A certain class of protein is found to exist in several different species. The amino acid sequence of this protein is compared between a large number of species. The greatest number of amino acid differences will be found between species of different .
The higher the taxonomic group, the less similar the members are. This is true for appearance, behavior, and genetics. The order of taxonomic groupings, from most general to most specific is: kingdom, phylum, class, order, family, genus, species.
Of the given answers, phyla are the highest taxonomic rank. Species of different phyla would show the greatest genetic difference. In contrast, genera are the lowest taxonomic rank of the given answers; species of the same genus would show the least genetic difference.
The higher the taxonomic group, the less similar the members are. This is true for appearance, behavior, and genetics. The order of taxonomic groupings, from most general to most specific is: kingdom, phylum, class, order, family, genus, species.
Of the given answers, phyla are the highest taxonomic rank. Species of different phyla would show the greatest genetic difference. In contrast, genera are the lowest taxonomic rank of the given answers; species of the same genus would show the least genetic difference.
Compare your answer with the correct one above
Which structures did not evolve after plants emerged onto land?
Which structures did not evolve after plants emerged onto land?
Cell walls were present in plant cells before the transition to land. Seeds, stomata, waxy cuticles, and vascular transport all evolved to reduce water loss and circulate water to all areas of the plant. Water loss and circulation were not an issue before the transition to land; plants were forced to adapt these traits in order to survive in a terrestrial environment.
Cell walls were present in plant cells before the transition to land. Seeds, stomata, waxy cuticles, and vascular transport all evolved to reduce water loss and circulate water to all areas of the plant. Water loss and circulation were not an issue before the transition to land; plants were forced to adapt these traits in order to survive in a terrestrial environment.
Compare your answer with the correct one above
Which of the following is not an example of an advantage gained through the vascularization of plants?
Which of the following is not an example of an advantage gained through the vascularization of plants?
Swimming sperm is a feature of avascular and early vascular plants, who needed to remain in moist environments in order to retain water.
After gaining vascular systems, plants were able to circulate water and nutrients more efficiently, thus being able to grow larger, have more leaves, develop branched systems of roots and shoots to collect water and nutrients, and better dispersal of spores due to gains in size.
Swimming sperm is a feature of avascular and early vascular plants, who needed to remain in moist environments in order to retain water.
After gaining vascular systems, plants were able to circulate water and nutrients more efficiently, thus being able to grow larger, have more leaves, develop branched systems of roots and shoots to collect water and nutrients, and better dispersal of spores due to gains in size.
Compare your answer with the correct one above
Which is of the following is not an adaptation/modification that enabled plants to move from aquatic to terrestrial environments as they evolved?
Which is of the following is not an adaptation/modification that enabled plants to move from aquatic to terrestrial environments as they evolved?
Thylakoid membranes are found within chloroplasts, which are used for photosynthesis. Plants found in both aquatic and terrestrial environments photosynthesize, so these membranes cannot be considered adaptations uniquely benefiting terrestrial plants.
Comparatively, cutin is a waxy coating found on various parts of plants that helps prevent water loss when exposed to air. Stomata are tiny openings in the epidermis of plants that allow for the exchange of carbon dioxide and oxygen while minimizing water loss. Roots and root hairs allow plants to absorb nutrients and water from the soil. Water loss was the primary challenge plants faced when moving from aquatic to terrestrial environments; cutin, stomata, roots, and root hairs all help terrestrial plants absorb and conserve water.
Thylakoid membranes are found within chloroplasts, which are used for photosynthesis. Plants found in both aquatic and terrestrial environments photosynthesize, so these membranes cannot be considered adaptations uniquely benefiting terrestrial plants.
Comparatively, cutin is a waxy coating found on various parts of plants that helps prevent water loss when exposed to air. Stomata are tiny openings in the epidermis of plants that allow for the exchange of carbon dioxide and oxygen while minimizing water loss. Roots and root hairs allow plants to absorb nutrients and water from the soil. Water loss was the primary challenge plants faced when moving from aquatic to terrestrial environments; cutin, stomata, roots, and root hairs all help terrestrial plants absorb and conserve water.
Compare your answer with the correct one above
As plants moved from water to land, they developed structures and lifestyles better suited to life in their new environment. Which of the following is not an example of these adaptations?
As plants moved from water to land, they developed structures and lifestyles better suited to life in their new environment. Which of the following is not an example of these adaptations?
Plants developed more rigid structures to help maintain their growth on land as opposed to water.
Waxy cuticles developed to help reduce water loss/desiccation. Roots allowed plants greater access to water, as well as provided anchoring to the ground; this allowed plants to grow taller. Vascular tissue facilitated transport of water and nutrients to all parts of the plant. Stomata helped with gas exchange.
Plants developed more rigid structures to help maintain their growth on land as opposed to water.
Waxy cuticles developed to help reduce water loss/desiccation. Roots allowed plants greater access to water, as well as provided anchoring to the ground; this allowed plants to grow taller. Vascular tissue facilitated transport of water and nutrients to all parts of the plant. Stomata helped with gas exchange.
Compare your answer with the correct one above
What term best describes when one species exhibits two or more defined phenotypes within the same population?
What term best describes when one species exhibits two or more defined phenotypes within the same population?
The correct answer is polymorphism. A polymorphism refers to multiple phenoytpes (morphs) that exist within a population, generally as a result of multiple alleles for the same gene.
Sympatry and allopatry refer to mechanisms of speciation and natural selection favors a certain phenotype for its fitness or other survival advantages. Assortative mating describes a biased mating pattern based on either phenotype or behavior.
The correct answer is polymorphism. A polymorphism refers to multiple phenoytpes (morphs) that exist within a population, generally as a result of multiple alleles for the same gene.
Sympatry and allopatry refer to mechanisms of speciation and natural selection favors a certain phenotype for its fitness or other survival advantages. Assortative mating describes a biased mating pattern based on either phenotype or behavior.
Compare your answer with the correct one above
Which of the following is most accurate about single nucleotide polymorphisms (SNPs)?
Which of the following is most accurate about single nucleotide polymorphisms (SNPs)?
In order for a nucleotide substitution to be considered a SNP and not a random mutation, it must occur in 1% or more of the population. SNPs are more frequently found in non-coding regions. Typically, SNPs are much less commonly found in AT-rich microsatellites.
In order for a nucleotide substitution to be considered a SNP and not a random mutation, it must occur in 1% or more of the population. SNPs are more frequently found in non-coding regions. Typically, SNPs are much less commonly found in AT-rich microsatellites.
Compare your answer with the correct one above
What is the major difference between synonymous and non-synonymous substitutions?
What is the major difference between synonymous and non-synonymous substitutions?
If single nucleotide polymorphisms (SNPs) that occur in coding regions do not trigger an amino acid change in the protein, they are synonymous. A SNP can cause a missense mutation (an amino acid change in the protein) or a nonsense mutation (an amino acid change to a stop codon), both of these are nonsynonymous substitutions.
If single nucleotide polymorphisms (SNPs) that occur in coding regions do not trigger an amino acid change in the protein, they are synonymous. A SNP can cause a missense mutation (an amino acid change in the protein) or a nonsense mutation (an amino acid change to a stop codon), both of these are nonsynonymous substitutions.
Compare your answer with the correct one above
As plants moved from water to land, they developed structures and lifestyles better suited to life in their new environment. Which of the following is not an example of these adaptations?
As plants moved from water to land, they developed structures and lifestyles better suited to life in their new environment. Which of the following is not an example of these adaptations?
Plants developed more rigid structures to help maintain their growth on land as opposed to water.
Waxy cuticles developed to help reduce water loss/desiccation. Roots allowed plants greater access to water, as well as provided anchoring to the ground; this allowed plants to grow taller. Vascular tissue facilitated transport of water and nutrients to all parts of the plant. Stomata helped with gas exchange.
Plants developed more rigid structures to help maintain their growth on land as opposed to water.
Waxy cuticles developed to help reduce water loss/desiccation. Roots allowed plants greater access to water, as well as provided anchoring to the ground; this allowed plants to grow taller. Vascular tissue facilitated transport of water and nutrients to all parts of the plant. Stomata helped with gas exchange.
Compare your answer with the correct one above
Which structures did not evolve after plants emerged onto land?
Which structures did not evolve after plants emerged onto land?
Cell walls were present in plant cells before the transition to land. Seeds, stomata, waxy cuticles, and vascular transport all evolved to reduce water loss and circulate water to all areas of the plant. Water loss and circulation were not an issue before the transition to land; plants were forced to adapt these traits in order to survive in a terrestrial environment.
Cell walls were present in plant cells before the transition to land. Seeds, stomata, waxy cuticles, and vascular transport all evolved to reduce water loss and circulate water to all areas of the plant. Water loss and circulation were not an issue before the transition to land; plants were forced to adapt these traits in order to survive in a terrestrial environment.
Compare your answer with the correct one above
Which of the following is not an example of an advantage gained through the vascularization of plants?
Which of the following is not an example of an advantage gained through the vascularization of plants?
Swimming sperm is a feature of avascular and early vascular plants, who needed to remain in moist environments in order to retain water.
After gaining vascular systems, plants were able to circulate water and nutrients more efficiently, thus being able to grow larger, have more leaves, develop branched systems of roots and shoots to collect water and nutrients, and better dispersal of spores due to gains in size.
Swimming sperm is a feature of avascular and early vascular plants, who needed to remain in moist environments in order to retain water.
After gaining vascular systems, plants were able to circulate water and nutrients more efficiently, thus being able to grow larger, have more leaves, develop branched systems of roots and shoots to collect water and nutrients, and better dispersal of spores due to gains in size.
Compare your answer with the correct one above
Which is of the following is not an adaptation/modification that enabled plants to move from aquatic to terrestrial environments as they evolved?
Which is of the following is not an adaptation/modification that enabled plants to move from aquatic to terrestrial environments as they evolved?
Thylakoid membranes are found within chloroplasts, which are used for photosynthesis. Plants found in both aquatic and terrestrial environments photosynthesize, so these membranes cannot be considered adaptations uniquely benefiting terrestrial plants.
Comparatively, cutin is a waxy coating found on various parts of plants that helps prevent water loss when exposed to air. Stomata are tiny openings in the epidermis of plants that allow for the exchange of carbon dioxide and oxygen while minimizing water loss. Roots and root hairs allow plants to absorb nutrients and water from the soil. Water loss was the primary challenge plants faced when moving from aquatic to terrestrial environments; cutin, stomata, roots, and root hairs all help terrestrial plants absorb and conserve water.
Thylakoid membranes are found within chloroplasts, which are used for photosynthesis. Plants found in both aquatic and terrestrial environments photosynthesize, so these membranes cannot be considered adaptations uniquely benefiting terrestrial plants.
Comparatively, cutin is a waxy coating found on various parts of plants that helps prevent water loss when exposed to air. Stomata are tiny openings in the epidermis of plants that allow for the exchange of carbon dioxide and oxygen while minimizing water loss. Roots and root hairs allow plants to absorb nutrients and water from the soil. Water loss was the primary challenge plants faced when moving from aquatic to terrestrial environments; cutin, stomata, roots, and root hairs all help terrestrial plants absorb and conserve water.
Compare your answer with the correct one above
A scientist studies three populations of frog (populations A, B, and C) that live in the same rainforest. He notices some interesting similarities between the three groups. What would be the best evidence that A and B have a more recent common ancestor than A and C or B and C?
A scientist studies three populations of frog (populations A, B, and C) that live in the same rainforest. He notices some interesting similarities between the three groups. What would be the best evidence that A and B have a more recent common ancestor than A and C or B and C?
Mitochondrial DNA (mtDNA) is only inherited directly from a mother to her offspring and can be used to directly track lineage of a population or species. Nuclear DNA (nDNA) is inherited from both the father and mother of the offspring; it can be used to track lineage as well, but mtDNA similarity is enough to conclude a close relationship between the two populations described in the question.
Color, diet, and location are all distinguishing features of the populations and help characterize their niche in the ecosystem. Diet and location (territory) are not heritable traits, and do not signify ancestry. Color is genetic, but could result from convergent or divergent evolution. mtDNA similarity is the strongest available evidence for a close ancestral link between populations A and B.
Mitochondrial DNA (mtDNA) is only inherited directly from a mother to her offspring and can be used to directly track lineage of a population or species. Nuclear DNA (nDNA) is inherited from both the father and mother of the offspring; it can be used to track lineage as well, but mtDNA similarity is enough to conclude a close relationship between the two populations described in the question.
Color, diet, and location are all distinguishing features of the populations and help characterize their niche in the ecosystem. Diet and location (territory) are not heritable traits, and do not signify ancestry. Color is genetic, but could result from convergent or divergent evolution. mtDNA similarity is the strongest available evidence for a close ancestral link between populations A and B.
Compare your answer with the correct one above
Phylogenetics relates organisms to one another based on genetic distance that increases with evolutionary time. This principle requires the use of what kind of genes in order to give accurate relationships?
Phylogenetics relates organisms to one another based on genetic distance that increases with evolutionary time. This principle requires the use of what kind of genes in order to give accurate relationships?
In order to derive an accurate estimate of phylogenetic relationships, scientists need to use neutral DNA markers in their studies. If genes are under any sort of selection, it could completely change the results, because this may not reflect the actual evolutionary past of the organisms. It is also generally important to incorporate both nuclear and mitochondrial DNA, because these types of genes can show different histories (remember, mitochondrial DNA is inherited maternally).
In order to derive an accurate estimate of phylogenetic relationships, scientists need to use neutral DNA markers in their studies. If genes are under any sort of selection, it could completely change the results, because this may not reflect the actual evolutionary past of the organisms. It is also generally important to incorporate both nuclear and mitochondrial DNA, because these types of genes can show different histories (remember, mitochondrial DNA is inherited maternally).
Compare your answer with the correct one above
A scientist studies three populations of frog (populations A, B, and C) that live in the same rainforest. He notices some interesting similarities between the three groups. What would be the best evidence that A and B have a more recent common ancestor than A and C or B and C?
A scientist studies three populations of frog (populations A, B, and C) that live in the same rainforest. He notices some interesting similarities between the three groups. What would be the best evidence that A and B have a more recent common ancestor than A and C or B and C?
Mitochondrial DNA (mtDNA) is only inherited directly from a mother to her offspring and can be used to directly track lineage of a population or species. Nuclear DNA (nDNA) is inherited from both the father and mother of the offspring; it can be used to track lineage as well, but mtDNA similarity is enough to conclude a close relationship between the two populations described in the question.
Color, diet, and location are all distinguishing features of the populations and help characterize their niche in the ecosystem. Diet and location (territory) are not heritable traits, and do not signify ancestry. Color is genetic, but could result from convergent or divergent evolution. mtDNA similarity is the strongest available evidence for a close ancestral link between populations A and B.
Mitochondrial DNA (mtDNA) is only inherited directly from a mother to her offspring and can be used to directly track lineage of a population or species. Nuclear DNA (nDNA) is inherited from both the father and mother of the offspring; it can be used to track lineage as well, but mtDNA similarity is enough to conclude a close relationship between the two populations described in the question.
Color, diet, and location are all distinguishing features of the populations and help characterize their niche in the ecosystem. Diet and location (territory) are not heritable traits, and do not signify ancestry. Color is genetic, but could result from convergent or divergent evolution. mtDNA similarity is the strongest available evidence for a close ancestral link between populations A and B.
Compare your answer with the correct one above