Cylinders - GRE Quantitative Reasoning
Card 0 of 88
What is the surface area of a cylinder with a radius of 6 and a height of 9?
What is the surface area of a cylinder with a radius of 6 and a height of 9?
Tap to see back →
surface area of a cylinder
= 2_πr_2 + 2_πrh_
= 2_π_ * 62 + 2_π_ * 6 *9
= 180_π_
surface area of a cylinder
= 2_πr_2 + 2_πrh_
= 2_π_ * 62 + 2_π_ * 6 *9
= 180_π_
Quantitative Comparison
Quantity A: The volume of a cylinder with a radius of 3 and a height of 4
Quantity B: 3 times the volume of a cone with a radius of 3 and a height of 4
Quantitative Comparison
Quantity A: The volume of a cylinder with a radius of 3 and a height of 4
Quantity B: 3 times the volume of a cone with a radius of 3 and a height of 4
Tap to see back →
There is no need to do the actual computations here to find the two volumes. The volume of a cone is exactly 1/3 the volume of a cylinder with the same height and radius. That means the two quantities are equal. The formulas show this relationship as well: volume of a cone = πr_2_h/3 and volume of a cylinder = πr_2_h.
There is no need to do the actual computations here to find the two volumes. The volume of a cone is exactly 1/3 the volume of a cylinder with the same height and radius. That means the two quantities are equal. The formulas show this relationship as well: volume of a cone = πr_2_h/3 and volume of a cylinder = πr_2_h.
The area of the base of a circular right cylinder is quadrupled. By what percentage is the outer face increased by this change?
The area of the base of a circular right cylinder is quadrupled. By what percentage is the outer face increased by this change?
Tap to see back →
The base of the original cylinder would have been πr2, and the outer face would have been 2πrh, where h is the height of the cylinder.
Let's represent the original area with A, the original radius with r, and the new radius with R: therefore, we know πR2 = 4A, or πR2 = 4πr2. Solving for R, we get R = 2r; therefore, the new outer face of the cylinder will have an area of 2πRh or 2π2rh or 4πrh, which is double the original face area; thus the percentage of increase is 100%. (Don't be tricked into thinking it is 200%. That is not the percentage of increase.)
The base of the original cylinder would have been πr2, and the outer face would have been 2πrh, where h is the height of the cylinder.
Let's represent the original area with A, the original radius with r, and the new radius with R: therefore, we know πR2 = 4A, or πR2 = 4πr2. Solving for R, we get R = 2r; therefore, the new outer face of the cylinder will have an area of 2πRh or 2π2rh or 4πrh, which is double the original face area; thus the percentage of increase is 100%. (Don't be tricked into thinking it is 200%. That is not the percentage of increase.)
A cylinder has a radius of 4 and a height of 8. What is its surface area?
A cylinder has a radius of 4 and a height of 8. What is its surface area?
Tap to see back →
This problem is simple if we remember the surface area formula!

This problem is simple if we remember the surface area formula!
What is the surface area of a cylinder with a radius of 17 and a height of 3?
What is the surface area of a cylinder with a radius of 17 and a height of 3?
Tap to see back →
We need the formula for the surface area of a cylinder: SA = 2_πr_2 + 2_πrh_. This formula has π in it, but the answer choices don't. This means we must approximate π. None of the answers are too close to each other so we could really even use 3 here, but it is safest to use 3.14 as an approximate value of π.
Then SA = 2 * 3.14 * 172 + 2 * 3.14 * 17 * 3 ≈ 2137
We need the formula for the surface area of a cylinder: SA = 2_πr_2 + 2_πrh_. This formula has π in it, but the answer choices don't. This means we must approximate π. None of the answers are too close to each other so we could really even use 3 here, but it is safest to use 3.14 as an approximate value of π.
Then SA = 2 * 3.14 * 172 + 2 * 3.14 * 17 * 3 ≈ 2137
Quantitative Comparison
Quantity A: Surface area of a cylinder that is 2 feet high and has a radius of 4 feet
Quantity B: Surface area of a box that is 3 feet wide, 2 feet high, and 4 feet long
Quantitative Comparison
Quantity A: Surface area of a cylinder that is 2 feet high and has a radius of 4 feet
Quantity B: Surface area of a box that is 3 feet wide, 2 feet high, and 4 feet long
Tap to see back →
Quantity A: SA of a cylinder = 2_πr_2 + 2_πrh_ = 2_π *_ 16 + 2_π_ * 4 * 2 = 48_π_
Quantity B: SA of a rectangular solid = 2_ab_ + 2_bc_ + 2_ac_ = 2 * 3 * 2 + 2 * 2 * 4 + 2 * 3 * 4 = 52
48_π_ is much larger than 52, because π is approximately 3.14.
Quantity A: SA of a cylinder = 2_πr_2 + 2_πrh_ = 2_π *_ 16 + 2_π_ * 4 * 2 = 48_π_
Quantity B: SA of a rectangular solid = 2_ab_ + 2_bc_ + 2_ac_ = 2 * 3 * 2 + 2 * 2 * 4 + 2 * 3 * 4 = 52
48_π_ is much larger than 52, because π is approximately 3.14.
What is the surface area of a cylinder that has a diameter of 6 inches and is 4 inches tall?
What is the surface area of a cylinder that has a diameter of 6 inches and is 4 inches tall?
Tap to see back →
The formula for the surface area of a cylinder is
,
where
is the radius and
is the height.


The formula for the surface area of a cylinder is ,
where is the radius and
is the height.
A right circular cylinder of volume
has a height of 8.
Quantity A: 10
Quantity B: The circumference of the base
A right circular cylinder of volume has a height of 8.
Quantity A: 10
Quantity B: The circumference of the base
Tap to see back →
The volume of any solid figure is
. In this case, the volume of the cylinder is
and its height is
, which means that the area of its base must be
. Working backwards, you can figure out that the radius of a circle of area
is
. The circumference of a circle with a radius of
is
, which is greater than
.
The volume of any solid figure is . In this case, the volume of the cylinder is
and its height is
, which means that the area of its base must be
. Working backwards, you can figure out that the radius of a circle of area
is
. The circumference of a circle with a radius of
is
, which is greater than
.
A cylinder has a height of 4 and a circumference of 16π. What is its volume
A cylinder has a height of 4 and a circumference of 16π. What is its volume
Tap to see back →
circumference = πd
d = 2r
volume of cylinder = πr2h
r = 8, h = 4
volume = 256π
circumference = πd
d = 2r
volume of cylinder = πr2h
r = 8, h = 4
volume = 256π
Rusty is considering making a cylindrical grain silo to store his crops. He has an area that is 6 feet long, 6 feet wide and 12 feet tall to build a cylinder in. What is the maximum volume of grain that he can store in this cylinder?
Rusty is considering making a cylindrical grain silo to store his crops. He has an area that is 6 feet long, 6 feet wide and 12 feet tall to build a cylinder in. What is the maximum volume of grain that he can store in this cylinder?
Tap to see back →
The maximum cylindrical base can have a diameter of 6 and therefore a radius of 3. The formula for the volume of a cylinder is pi $r^{2}$h, which in this case is 3times 3times 12times pi.
The maximum cylindrical base can have a diameter of 6 and therefore a radius of 3. The formula for the volume of a cylinder is pi $r^{2}$h, which in this case is 3times 3times 12times pi.
A cylinder with volume of
and a radius of
has its radius doubled. What is the volume of the new cylinder?
A cylinder with volume of and a radius of
has its radius doubled. What is the volume of the new cylinder?
Tap to see back →
To begin, you must solve for the height of the original cylinder. We know:

For our values, we know:

Now, divide both sides by
:

So, if we have a new radius of
, our volume will be:

To begin, you must solve for the height of the original cylinder. We know:
For our values, we know:
Now, divide both sides by :
So, if we have a new radius of , our volume will be:
What is the surface area of a cylinder with a radius of 6 and a height of 9?
What is the surface area of a cylinder with a radius of 6 and a height of 9?
Tap to see back →
surface area of a cylinder
= 2_πr_2 + 2_πrh_
= 2_π_ * 62 + 2_π_ * 6 *9
= 180_π_
surface area of a cylinder
= 2_πr_2 + 2_πrh_
= 2_π_ * 62 + 2_π_ * 6 *9
= 180_π_
Quantitative Comparison
Quantity A: The volume of a cylinder with a radius of 3 and a height of 4
Quantity B: 3 times the volume of a cone with a radius of 3 and a height of 4
Quantitative Comparison
Quantity A: The volume of a cylinder with a radius of 3 and a height of 4
Quantity B: 3 times the volume of a cone with a radius of 3 and a height of 4
Tap to see back →
There is no need to do the actual computations here to find the two volumes. The volume of a cone is exactly 1/3 the volume of a cylinder with the same height and radius. That means the two quantities are equal. The formulas show this relationship as well: volume of a cone = πr_2_h/3 and volume of a cylinder = πr_2_h.
There is no need to do the actual computations here to find the two volumes. The volume of a cone is exactly 1/3 the volume of a cylinder with the same height and radius. That means the two quantities are equal. The formulas show this relationship as well: volume of a cone = πr_2_h/3 and volume of a cylinder = πr_2_h.
The area of the base of a circular right cylinder is quadrupled. By what percentage is the outer face increased by this change?
The area of the base of a circular right cylinder is quadrupled. By what percentage is the outer face increased by this change?
Tap to see back →
The base of the original cylinder would have been πr2, and the outer face would have been 2πrh, where h is the height of the cylinder.
Let's represent the original area with A, the original radius with r, and the new radius with R: therefore, we know πR2 = 4A, or πR2 = 4πr2. Solving for R, we get R = 2r; therefore, the new outer face of the cylinder will have an area of 2πRh or 2π2rh or 4πrh, which is double the original face area; thus the percentage of increase is 100%. (Don't be tricked into thinking it is 200%. That is not the percentage of increase.)
The base of the original cylinder would have been πr2, and the outer face would have been 2πrh, where h is the height of the cylinder.
Let's represent the original area with A, the original radius with r, and the new radius with R: therefore, we know πR2 = 4A, or πR2 = 4πr2. Solving for R, we get R = 2r; therefore, the new outer face of the cylinder will have an area of 2πRh or 2π2rh or 4πrh, which is double the original face area; thus the percentage of increase is 100%. (Don't be tricked into thinking it is 200%. That is not the percentage of increase.)
A cylinder has a radius of 4 and a height of 8. What is its surface area?
A cylinder has a radius of 4 and a height of 8. What is its surface area?
Tap to see back →
This problem is simple if we remember the surface area formula!

This problem is simple if we remember the surface area formula!
What is the surface area of a cylinder with a radius of 17 and a height of 3?
What is the surface area of a cylinder with a radius of 17 and a height of 3?
Tap to see back →
We need the formula for the surface area of a cylinder: SA = 2_πr_2 + 2_πrh_. This formula has π in it, but the answer choices don't. This means we must approximate π. None of the answers are too close to each other so we could really even use 3 here, but it is safest to use 3.14 as an approximate value of π.
Then SA = 2 * 3.14 * 172 + 2 * 3.14 * 17 * 3 ≈ 2137
We need the formula for the surface area of a cylinder: SA = 2_πr_2 + 2_πrh_. This formula has π in it, but the answer choices don't. This means we must approximate π. None of the answers are too close to each other so we could really even use 3 here, but it is safest to use 3.14 as an approximate value of π.
Then SA = 2 * 3.14 * 172 + 2 * 3.14 * 17 * 3 ≈ 2137
Quantitative Comparison
Quantity A: Surface area of a cylinder that is 2 feet high and has a radius of 4 feet
Quantity B: Surface area of a box that is 3 feet wide, 2 feet high, and 4 feet long
Quantitative Comparison
Quantity A: Surface area of a cylinder that is 2 feet high and has a radius of 4 feet
Quantity B: Surface area of a box that is 3 feet wide, 2 feet high, and 4 feet long
Tap to see back →
Quantity A: SA of a cylinder = 2_πr_2 + 2_πrh_ = 2_π *_ 16 + 2_π_ * 4 * 2 = 48_π_
Quantity B: SA of a rectangular solid = 2_ab_ + 2_bc_ + 2_ac_ = 2 * 3 * 2 + 2 * 2 * 4 + 2 * 3 * 4 = 52
48_π_ is much larger than 52, because π is approximately 3.14.
Quantity A: SA of a cylinder = 2_πr_2 + 2_πrh_ = 2_π *_ 16 + 2_π_ * 4 * 2 = 48_π_
Quantity B: SA of a rectangular solid = 2_ab_ + 2_bc_ + 2_ac_ = 2 * 3 * 2 + 2 * 2 * 4 + 2 * 3 * 4 = 52
48_π_ is much larger than 52, because π is approximately 3.14.
What is the surface area of a cylinder that has a diameter of 6 inches and is 4 inches tall?
What is the surface area of a cylinder that has a diameter of 6 inches and is 4 inches tall?
Tap to see back →
The formula for the surface area of a cylinder is
,
where
is the radius and
is the height.


The formula for the surface area of a cylinder is ,
where is the radius and
is the height.
A right circular cylinder of volume
has a height of 8.
Quantity A: 10
Quantity B: The circumference of the base
A right circular cylinder of volume has a height of 8.
Quantity A: 10
Quantity B: The circumference of the base
Tap to see back →
The volume of any solid figure is
. In this case, the volume of the cylinder is
and its height is
, which means that the area of its base must be
. Working backwards, you can figure out that the radius of a circle of area
is
. The circumference of a circle with a radius of
is
, which is greater than
.
The volume of any solid figure is . In this case, the volume of the cylinder is
and its height is
, which means that the area of its base must be
. Working backwards, you can figure out that the radius of a circle of area
is
. The circumference of a circle with a radius of
is
, which is greater than
.
A cylinder has a height of 4 and a circumference of 16π. What is its volume
A cylinder has a height of 4 and a circumference of 16π. What is its volume
Tap to see back →
circumference = πd
d = 2r
volume of cylinder = πr2h
r = 8, h = 4
volume = 256π
circumference = πd
d = 2r
volume of cylinder = πr2h
r = 8, h = 4
volume = 256π