How to find a solution to a compound fraction - GRE Quantitative Reasoning
Card 0 of 56
Edward rolls three dice; two are six-sided, and one is twenty-sided, with 1 through 6 represented on the six-sided dice, and 1 through 20 represented on the twenty-sided die.
What is the probability that the sum of his roll will equal 5?
Edward rolls three dice; two are six-sided, and one is twenty-sided, with 1 through 6 represented on the six-sided dice, and 1 through 20 represented on the twenty-sided die.
What is the probability that the sum of his roll will equal 5?
The first step will be to calculate how many total different potential rolls are possible. This is given by the product of the number of possible rolls for each of the dice: 6, 6, 20:


Next it is necessary to account for the total number of rolls that will sum up to 5. Writing them out can help, such as in the format of:


Knowing that there are 6 different rolls that sum up to 5, the probability of rolling a 5 can be found by taking the number of events that satisfy this sum and dividing it by the number of total possible events:

The first step will be to calculate how many total different potential rolls are possible. This is given by the product of the number of possible rolls for each of the dice: 6, 6, 20:
Next it is necessary to account for the total number of rolls that will sum up to 5. Writing them out can help, such as in the format of:
Knowing that there are 6 different rolls that sum up to 5, the probability of rolling a 5 can be found by taking the number of events that satisfy this sum and dividing it by the number of total possible events:
Compare your answer with the correct one above
Which of the following is equal to  of the reciprocal of
 of the reciprocal of  percent?
 percent?
Which of the following is equal to  of the reciprocal of 
 percent?
The first step will be to find the reciprocal of  percent. Note that as a percent, this should be converted to a decimal form:
 percent. Note that as a percent, this should be converted to a decimal form:  .
.
The reciprocal of a number is given by  divided by that number, so the reciprocal of
 divided by that number, so the reciprocal of  is given as:
 is given as:

Therefore:

The first step will be to find the reciprocal of  percent. Note that as a percent, this should be converted to a decimal form: 
.
The reciprocal of a number is given by  divided by that number, so the reciprocal of 
 is given as:
Therefore:
Compare your answer with the correct one above

Simplify the following:

Simplify the following:
Looking at this equation, note that since all terms in the numerator and denominator contain a  , it is possible to rewrite it as follows:
, it is possible to rewrite it as follows:

or

Now the parenthetical terms must be addressed. The problem statement and answer choices give a clue that they are some sort of multiples of  .
.
In fact, Pascal's triangle reveals that the top and bottom are the cube and square of this term respectively:

Cancelling terms, we are left with:

Looking at this equation, note that since all terms in the numerator and denominator contain a , it is possible to rewrite it as follows:
or
Now the parenthetical terms must be addressed. The problem statement and answer choices give a clue that they are some sort of multiples of .
In fact, Pascal's triangle reveals that the top and bottom are the cube and square of this term respectively:
Cancelling terms, we are left with:
Compare your answer with the correct one above
 percent of
 percent of  is
 is  .
.
 percent of
 percent of  is
 is  .
.
Quantity A: 
Quantity B: 
 percent of 
 is 
.
 percent of 
 is 
.
Quantity A: 
Quantity B: 
To make the comparison, the values of  and
 and  must be determined.
 must be determined.
We are told that  percent of
 percent of  is
 is  , so its value can be determined as follows:
, so its value can be determined as follows:

With  known, it is possible to find
 known, it is possible to find  , since
, since  percent of
 percent of  is
 is  :
:



The two quantities are equal.
To make the comparison, the values of  and 
 must be determined.
We are told that  percent of 
 is 
, so its value can be determined as follows:
With  known, it is possible to find 
, since 
 percent of 
 is 
:
The two quantities are equal.
Compare your answer with the correct one above
 can be rewritten as
 can be rewritten as  times what?
 times what?
 can be rewritten as 
 times what?
To solve this problem, realize that a decimal may be placed at the very end of this integer:

Now, count how many spaces the decimal will need to move to the left to reach:

It must move a total of  spaces, so:
 spaces, so:

To solve this problem, realize that a decimal may be placed at the very end of this integer:
Now, count how many spaces the decimal will need to move to the left to reach:
It must move a total of  spaces, so:
Compare your answer with the correct one above
 is a repeating decimal. What digit is in the
 is a repeating decimal. What digit is in the  place?
 place?
 is a repeating decimal. What digit is in the 
 place?
Examination of the value  reveals that after the sequence
 reveals that after the sequence  , the decimal repeats, and that the sequence has a length of eight values.
, the decimal repeats, and that the sequence has a length of eight values.
A longer answer would be to write the sequence out and count down the digits until the  value was found. However, this is a time-consuming process and one that is prone to error.
 value was found. However, this is a time-consuming process and one that is prone to error.
Rather, notice how since the numbers repeat, it's possible to skip most of the counting:
 digit:
 digit: 
 digit:
 digit: 
And so on. Since  is the closest multiple to
 is the closest multiple to  , we can subtract the two to find the digit that matches the
, we can subtract the two to find the digit that matches the  digit.
 digit.

So the  digit is
 digit is  .
.
Examination of the value  reveals that after the sequence 
, the decimal repeats, and that the sequence has a length of eight values.
A longer answer would be to write the sequence out and count down the digits until the  value was found. However, this is a time-consuming process and one that is prone to error.
Rather, notice how since the numbers repeat, it's possible to skip most of the counting:
 digit: 
 digit: 
And so on. Since  is the closest multiple to 
, we can subtract the two to find the digit that matches the 
 digit.
So the  digit is 
.
Compare your answer with the correct one above
Simplify: 
Simplify: 
To solve this problem, begin with simplifying the numerator. This can be done by first finding a common denominator. For

a common denominator would be  :
:

or

Which combines into:

But recall that this is just the numerator, and there is still a  in the denominator:
 in the denominator:

So, the final answer is:

To solve this problem, begin with simplifying the numerator. This can be done by first finding a common denominator. For
a common denominator would be :
or
Which combines into:
But recall that this is just the numerator, and there is still a  in the denominator:
So, the final answer is:
Compare your answer with the correct one above
Edward rolls three dice; two are six-sided, and one is twenty-sided, with 1 through 6 represented on the six-sided dice, and 1 through 20 represented on the twenty-sided die.
What is the probability that the sum of his roll will equal 5?
Edward rolls three dice; two are six-sided, and one is twenty-sided, with 1 through 6 represented on the six-sided dice, and 1 through 20 represented on the twenty-sided die.
What is the probability that the sum of his roll will equal 5?
The first step will be to calculate how many total different potential rolls are possible. This is given by the product of the number of possible rolls for each of the dice: 6, 6, 20:


Next it is necessary to account for the total number of rolls that will sum up to 5. Writing them out can help, such as in the format of:


Knowing that there are 6 different rolls that sum up to 5, the probability of rolling a 5 can be found by taking the number of events that satisfy this sum and dividing it by the number of total possible events:

The first step will be to calculate how many total different potential rolls are possible. This is given by the product of the number of possible rolls for each of the dice: 6, 6, 20:
Next it is necessary to account for the total number of rolls that will sum up to 5. Writing them out can help, such as in the format of:
Knowing that there are 6 different rolls that sum up to 5, the probability of rolling a 5 can be found by taking the number of events that satisfy this sum and dividing it by the number of total possible events:
Compare your answer with the correct one above
Which of the following is equal to  of the reciprocal of
 of the reciprocal of  percent?
 percent?
Which of the following is equal to  of the reciprocal of 
 percent?
The first step will be to find the reciprocal of  percent. Note that as a percent, this should be converted to a decimal form:
 percent. Note that as a percent, this should be converted to a decimal form:  .
.
The reciprocal of a number is given by  divided by that number, so the reciprocal of
 divided by that number, so the reciprocal of  is given as:
 is given as:

Therefore:

The first step will be to find the reciprocal of  percent. Note that as a percent, this should be converted to a decimal form: 
.
The reciprocal of a number is given by  divided by that number, so the reciprocal of 
 is given as:
Therefore:
Compare your answer with the correct one above

Simplify the following:

Simplify the following:
Looking at this equation, note that since all terms in the numerator and denominator contain a  , it is possible to rewrite it as follows:
, it is possible to rewrite it as follows:

or

Now the parenthetical terms must be addressed. The problem statement and answer choices give a clue that they are some sort of multiples of  .
.
In fact, Pascal's triangle reveals that the top and bottom are the cube and square of this term respectively:

Cancelling terms, we are left with:

Looking at this equation, note that since all terms in the numerator and denominator contain a , it is possible to rewrite it as follows:
or
Now the parenthetical terms must be addressed. The problem statement and answer choices give a clue that they are some sort of multiples of .
In fact, Pascal's triangle reveals that the top and bottom are the cube and square of this term respectively:
Cancelling terms, we are left with:
Compare your answer with the correct one above
 percent of
 percent of  is
 is  .
.
 percent of
 percent of  is
 is  .
.
Quantity A: 
Quantity B: 
 percent of 
 is 
.
 percent of 
 is 
.
Quantity A: 
Quantity B: 
To make the comparison, the values of  and
 and  must be determined.
 must be determined.
We are told that  percent of
 percent of  is
 is  , so its value can be determined as follows:
, so its value can be determined as follows:

With  known, it is possible to find
 known, it is possible to find  , since
, since  percent of
 percent of  is
 is  :
:



The two quantities are equal.
To make the comparison, the values of  and 
 must be determined.
We are told that  percent of 
 is 
, so its value can be determined as follows:
With  known, it is possible to find 
, since 
 percent of 
 is 
:
The two quantities are equal.
Compare your answer with the correct one above
 can be rewritten as
 can be rewritten as  times what?
 times what?
 can be rewritten as 
 times what?
To solve this problem, realize that a decimal may be placed at the very end of this integer:

Now, count how many spaces the decimal will need to move to the left to reach:

It must move a total of  spaces, so:
 spaces, so:

To solve this problem, realize that a decimal may be placed at the very end of this integer:
Now, count how many spaces the decimal will need to move to the left to reach:
It must move a total of  spaces, so:
Compare your answer with the correct one above
 is a repeating decimal. What digit is in the
 is a repeating decimal. What digit is in the  place?
 place?
 is a repeating decimal. What digit is in the 
 place?
Examination of the value  reveals that after the sequence
 reveals that after the sequence  , the decimal repeats, and that the sequence has a length of eight values.
, the decimal repeats, and that the sequence has a length of eight values.
A longer answer would be to write the sequence out and count down the digits until the  value was found. However, this is a time-consuming process and one that is prone to error.
 value was found. However, this is a time-consuming process and one that is prone to error.
Rather, notice how since the numbers repeat, it's possible to skip most of the counting:
 digit:
 digit: 
 digit:
 digit: 
And so on. Since  is the closest multiple to
 is the closest multiple to  , we can subtract the two to find the digit that matches the
, we can subtract the two to find the digit that matches the  digit.
 digit.

So the  digit is
 digit is  .
.
Examination of the value  reveals that after the sequence 
, the decimal repeats, and that the sequence has a length of eight values.
A longer answer would be to write the sequence out and count down the digits until the  value was found. However, this is a time-consuming process and one that is prone to error.
Rather, notice how since the numbers repeat, it's possible to skip most of the counting:
 digit: 
 digit: 
And so on. Since  is the closest multiple to 
, we can subtract the two to find the digit that matches the 
 digit.
So the  digit is 
.
Compare your answer with the correct one above
Simplify: 
Simplify: 
To solve this problem, begin with simplifying the numerator. This can be done by first finding a common denominator. For

a common denominator would be  :
:

or

Which combines into:

But recall that this is just the numerator, and there is still a  in the denominator:
 in the denominator:

So, the final answer is:

To solve this problem, begin with simplifying the numerator. This can be done by first finding a common denominator. For
a common denominator would be :
or
Which combines into:
But recall that this is just the numerator, and there is still a  in the denominator:
So, the final answer is:
Compare your answer with the correct one above
Edward rolls three dice; two are six-sided, and one is twenty-sided, with 1 through 6 represented on the six-sided dice, and 1 through 20 represented on the twenty-sided die.
What is the probability that the sum of his roll will equal 5?
Edward rolls three dice; two are six-sided, and one is twenty-sided, with 1 through 6 represented on the six-sided dice, and 1 through 20 represented on the twenty-sided die.
What is the probability that the sum of his roll will equal 5?
The first step will be to calculate how many total different potential rolls are possible. This is given by the product of the number of possible rolls for each of the dice: 6, 6, 20:


Next it is necessary to account for the total number of rolls that will sum up to 5. Writing them out can help, such as in the format of:


Knowing that there are 6 different rolls that sum up to 5, the probability of rolling a 5 can be found by taking the number of events that satisfy this sum and dividing it by the number of total possible events:

The first step will be to calculate how many total different potential rolls are possible. This is given by the product of the number of possible rolls for each of the dice: 6, 6, 20:
Next it is necessary to account for the total number of rolls that will sum up to 5. Writing them out can help, such as in the format of:
Knowing that there are 6 different rolls that sum up to 5, the probability of rolling a 5 can be found by taking the number of events that satisfy this sum and dividing it by the number of total possible events:
Compare your answer with the correct one above
Which of the following is equal to  of the reciprocal of
 of the reciprocal of  percent?
 percent?
Which of the following is equal to  of the reciprocal of 
 percent?
The first step will be to find the reciprocal of  percent. Note that as a percent, this should be converted to a decimal form:
 percent. Note that as a percent, this should be converted to a decimal form:  .
.
The reciprocal of a number is given by  divided by that number, so the reciprocal of
 divided by that number, so the reciprocal of  is given as:
 is given as:

Therefore:

The first step will be to find the reciprocal of  percent. Note that as a percent, this should be converted to a decimal form: 
.
The reciprocal of a number is given by  divided by that number, so the reciprocal of 
 is given as:
Therefore:
Compare your answer with the correct one above

Simplify the following:

Simplify the following:
Looking at this equation, note that since all terms in the numerator and denominator contain a  , it is possible to rewrite it as follows:
, it is possible to rewrite it as follows:

or

Now the parenthetical terms must be addressed. The problem statement and answer choices give a clue that they are some sort of multiples of  .
.
In fact, Pascal's triangle reveals that the top and bottom are the cube and square of this term respectively:

Cancelling terms, we are left with:

Looking at this equation, note that since all terms in the numerator and denominator contain a , it is possible to rewrite it as follows:
or
Now the parenthetical terms must be addressed. The problem statement and answer choices give a clue that they are some sort of multiples of .
In fact, Pascal's triangle reveals that the top and bottom are the cube and square of this term respectively:
Cancelling terms, we are left with:
Compare your answer with the correct one above
 percent of
 percent of  is
 is  .
.
 percent of
 percent of  is
 is  .
.
Quantity A: 
Quantity B: 
 percent of 
 is 
.
 percent of 
 is 
.
Quantity A: 
Quantity B: 
To make the comparison, the values of  and
 and  must be determined.
 must be determined.
We are told that  percent of
 percent of  is
 is  , so its value can be determined as follows:
, so its value can be determined as follows:

With  known, it is possible to find
 known, it is possible to find  , since
, since  percent of
 percent of  is
 is  :
:



The two quantities are equal.
To make the comparison, the values of  and 
 must be determined.
We are told that  percent of 
 is 
, so its value can be determined as follows:
With  known, it is possible to find 
, since 
 percent of 
 is 
:
The two quantities are equal.
Compare your answer with the correct one above
 can be rewritten as
 can be rewritten as  times what?
 times what?
 can be rewritten as 
 times what?
To solve this problem, realize that a decimal may be placed at the very end of this integer:

Now, count how many spaces the decimal will need to move to the left to reach:

It must move a total of  spaces, so:
 spaces, so:

To solve this problem, realize that a decimal may be placed at the very end of this integer:
Now, count how many spaces the decimal will need to move to the left to reach:
It must move a total of  spaces, so:
Compare your answer with the correct one above
 is a repeating decimal. What digit is in the
 is a repeating decimal. What digit is in the  place?
 place?
 is a repeating decimal. What digit is in the 
 place?
Examination of the value  reveals that after the sequence
 reveals that after the sequence  , the decimal repeats, and that the sequence has a length of eight values.
, the decimal repeats, and that the sequence has a length of eight values.
A longer answer would be to write the sequence out and count down the digits until the  value was found. However, this is a time-consuming process and one that is prone to error.
 value was found. However, this is a time-consuming process and one that is prone to error.
Rather, notice how since the numbers repeat, it's possible to skip most of the counting:
 digit:
 digit: 
 digit:
 digit: 
And so on. Since  is the closest multiple to
 is the closest multiple to  , we can subtract the two to find the digit that matches the
, we can subtract the two to find the digit that matches the  digit.
 digit.

So the  digit is
 digit is  .
.
Examination of the value  reveals that after the sequence 
, the decimal repeats, and that the sequence has a length of eight values.
A longer answer would be to write the sequence out and count down the digits until the  value was found. However, this is a time-consuming process and one that is prone to error.
Rather, notice how since the numbers repeat, it's possible to skip most of the counting:
 digit: 
 digit: 
And so on. Since  is the closest multiple to 
, we can subtract the two to find the digit that matches the 
 digit.
So the  digit is 
.
Compare your answer with the correct one above