Plant Biology - AP Biology
Card 0 of 1666
Which plant tissue system is similar to the human circulatory system?
Which plant tissue system is similar to the human circulatory system?
A plant's vascular tissues transport nutrients throughout the plant, just as the circulatory system transports nutrients throughout human bodies. While blood is the primary solvent for nutrients in humans, water is the primary solvent for nutrients in plants. Animals, however, use blood pressure to propel nutrients throughout the body while plants use gravity and the cohesive properties of water to transport nutrients.
The two primary types of plant vascular tissue are xylem, which transports water, and phloem, which transports organic molecules like glucose.
A plant's vascular tissues transport nutrients throughout the plant, just as the circulatory system transports nutrients throughout human bodies. While blood is the primary solvent for nutrients in humans, water is the primary solvent for nutrients in plants. Animals, however, use blood pressure to propel nutrients throughout the body while plants use gravity and the cohesive properties of water to transport nutrients.
The two primary types of plant vascular tissue are xylem, which transports water, and phloem, which transports organic molecules like glucose.
Compare your answer with the correct one above
How do plants transport water against gravity?
How do plants transport water against gravity?
Plants do not have the ability to actively transport water to their respective cells. Instead, water undergoes capillary action, which allows it to flow upward against gravity. When the water is located in a very narrow chamber, such as the xylem of a plant, it creates intermolecular interactions with the walls of the chamber. These interactions allow small amounts of the water to "climb" the chamber walls. Due to the cohesion of water, whereby it is attracted to itself, more water molecules follow the "climbing" adhesion molecules. This subsequently allows the adhering molecules to climb higher, and the joint interaction of the adhesion and cohesion eventually allow the water to reach the topmost region of the plant (the leaves). Water is then released from the stomata, furthering the pull of water to the region of low pressure.
Plants do not have the ability to actively transport water to their respective cells. Instead, water undergoes capillary action, which allows it to flow upward against gravity. When the water is located in a very narrow chamber, such as the xylem of a plant, it creates intermolecular interactions with the walls of the chamber. These interactions allow small amounts of the water to "climb" the chamber walls. Due to the cohesion of water, whereby it is attracted to itself, more water molecules follow the "climbing" adhesion molecules. This subsequently allows the adhering molecules to climb higher, and the joint interaction of the adhesion and cohesion eventually allow the water to reach the topmost region of the plant (the leaves). Water is then released from the stomata, furthering the pull of water to the region of low pressure.
Compare your answer with the correct one above
Which of the following best describes how water is transported from the roots of a tree to the tallest branches?
Which of the following best describes how water is transported from the roots of a tree to the tallest branches?
One of water's most distinctive properties is cohesion—that is, the tendency of water molecules to "stick" to one another. In plants, this cohesion results in columns of water that stretch through the plant's xylem (the vascular tissue responsible for transport of water), from the roots all the way to the leaves. During transpiration, water evaporates from plants' leaves. Because of the cohesion of water, whenever water evaporates, more molecules are "pulled" into the roots to maintain the column of water. This is the transpirational pull-cohesion tension theory.
In contrast, adhesion is the tendency of water molecules to "stick" to other substances, such as the walls of a glass. Adhesion is responsible for the curved meniscus of water in a graduated cylinder. Phloem is responsible for sugar and carbohydrate transport in plants, while xylem transports water.
One of water's most distinctive properties is cohesion—that is, the tendency of water molecules to "stick" to one another. In plants, this cohesion results in columns of water that stretch through the plant's xylem (the vascular tissue responsible for transport of water), from the roots all the way to the leaves. During transpiration, water evaporates from plants' leaves. Because of the cohesion of water, whenever water evaporates, more molecules are "pulled" into the roots to maintain the column of water. This is the transpirational pull-cohesion tension theory.
In contrast, adhesion is the tendency of water molecules to "stick" to other substances, such as the walls of a glass. Adhesion is responsible for the curved meniscus of water in a graduated cylinder. Phloem is responsible for sugar and carbohydrate transport in plants, while xylem transports water.
Compare your answer with the correct one above
How would you expect plants in deserts to differ from those in rainforests?
How would you expect plants in deserts to differ from those in rainforests?
Desert plants would have different water retention and utilization strategies. They would likely use C4 or CAM photosynthesis. The C4 and CAM pathways are specific adaptations to arid conditions. They allow higher water retention, which is needed in the desert but not the rainforest. Since the main difference between these two environments is the abundance of water, even if the other options were true, they are minor differences in comparison to the need to utilize water differently.
Desert plants would have different water retention and utilization strategies. They would likely use C4 or CAM photosynthesis. The C4 and CAM pathways are specific adaptations to arid conditions. They allow higher water retention, which is needed in the desert but not the rainforest. Since the main difference between these two environments is the abundance of water, even if the other options were true, they are minor differences in comparison to the need to utilize water differently.
Compare your answer with the correct one above
Which of the following structures would be found in a tracheophyte, but not in a bryophyte?
Which of the following structures would be found in a tracheophyte, but not in a bryophyte?
All plants can be classified as either bryophytes or tracheophytes. Plants that contain transport vessels (xylem and phloem) are tracheophytes, while those without transport vessels are bryophytes. All plants contain cell walls and chloroplasts, but only a tracheophyte would contain xylem. Plasmids are structures that are almost exclusively found in bacteria or protozoans.
All plants can be classified as either bryophytes or tracheophytes. Plants that contain transport vessels (xylem and phloem) are tracheophytes, while those without transport vessels are bryophytes. All plants contain cell walls and chloroplasts, but only a tracheophyte would contain xylem. Plasmids are structures that are almost exclusively found in bacteria or protozoans.
Compare your answer with the correct one above
Fill in the blanks.
The generation is dominant in the bryophyte life cycles, and the generation is dominant in seedless vascular plants.
Fill in the blanks.
The generation is dominant in the bryophyte life cycles, and the generation is dominant in seedless vascular plants.
Bryophytes are nonvascular plants, such as mosses. Gametophytes are species that have haploid cells during their mature lives, while sporophytes are predominantly diploid during their adult phases.
Bryophytes have the gametophyte generation as dominant, with the sporophytes relying on the parental gametophyte. Starting with the evolution of seedless vascular plants, the gametophytes become reduced and are no longer the dominant life cycle. By the formation of angiosperms (seed plants), the gametophytes have become dependent on the parental sporophyte.
Bryophytes are nonvascular plants, such as mosses. Gametophytes are species that have haploid cells during their mature lives, while sporophytes are predominantly diploid during their adult phases.
Bryophytes have the gametophyte generation as dominant, with the sporophytes relying on the parental gametophyte. Starting with the evolution of seedless vascular plants, the gametophytes become reduced and are no longer the dominant life cycle. By the formation of angiosperms (seed plants), the gametophytes have become dependent on the parental sporophyte.
Compare your answer with the correct one above
Which of the following is not an example of an advantage gained through the vascularization of plants?
Which of the following is not an example of an advantage gained through the vascularization of plants?
Swimming sperm is a feature of avascular and early vascular plants, who needed to remain in moist environments in order to retain water.
After gaining vascular systems, plants were able to circulate water and nutrients more efficiently, thus being able to grow larger, have more leaves, develop branched systems of roots and shoots to collect water and nutrients, and better dispersal of spores due to gains in size.
Swimming sperm is a feature of avascular and early vascular plants, who needed to remain in moist environments in order to retain water.
After gaining vascular systems, plants were able to circulate water and nutrients more efficiently, thus being able to grow larger, have more leaves, develop branched systems of roots and shoots to collect water and nutrients, and better dispersal of spores due to gains in size.
Compare your answer with the correct one above
Which of the following best describes the pith: a tissue type present in vascular plants?
Which of the following best describes the pith: a tissue type present in vascular plants?
Pith is a type of tissue located in the stems of vascular plants. It stores and transports nutrients throughout the plant. The pith is composed of parenchyma cells.
Pith is a type of tissue located in the stems of vascular plants. It stores and transports nutrients throughout the plant. The pith is composed of parenchyma cells.
Compare your answer with the correct one above
Which plant tissue system is similar to the human circulatory system?
Which plant tissue system is similar to the human circulatory system?
A plant's vascular tissues transport nutrients throughout the plant, just as the circulatory system transports nutrients throughout human bodies. While blood is the primary solvent for nutrients in humans, water is the primary solvent for nutrients in plants. Animals, however, use blood pressure to propel nutrients throughout the body while plants use gravity and the cohesive properties of water to transport nutrients.
The two primary types of plant vascular tissue are xylem, which transports water, and phloem, which transports organic molecules like glucose.
A plant's vascular tissues transport nutrients throughout the plant, just as the circulatory system transports nutrients throughout human bodies. While blood is the primary solvent for nutrients in humans, water is the primary solvent for nutrients in plants. Animals, however, use blood pressure to propel nutrients throughout the body while plants use gravity and the cohesive properties of water to transport nutrients.
The two primary types of plant vascular tissue are xylem, which transports water, and phloem, which transports organic molecules like glucose.
Compare your answer with the correct one above
How do plants transport water against gravity?
How do plants transport water against gravity?
Plants do not have the ability to actively transport water to their respective cells. Instead, water undergoes capillary action, which allows it to flow upward against gravity. When the water is located in a very narrow chamber, such as the xylem of a plant, it creates intermolecular interactions with the walls of the chamber. These interactions allow small amounts of the water to "climb" the chamber walls. Due to the cohesion of water, whereby it is attracted to itself, more water molecules follow the "climbing" adhesion molecules. This subsequently allows the adhering molecules to climb higher, and the joint interaction of the adhesion and cohesion eventually allow the water to reach the topmost region of the plant (the leaves). Water is then released from the stomata, furthering the pull of water to the region of low pressure.
Plants do not have the ability to actively transport water to their respective cells. Instead, water undergoes capillary action, which allows it to flow upward against gravity. When the water is located in a very narrow chamber, such as the xylem of a plant, it creates intermolecular interactions with the walls of the chamber. These interactions allow small amounts of the water to "climb" the chamber walls. Due to the cohesion of water, whereby it is attracted to itself, more water molecules follow the "climbing" adhesion molecules. This subsequently allows the adhering molecules to climb higher, and the joint interaction of the adhesion and cohesion eventually allow the water to reach the topmost region of the plant (the leaves). Water is then released from the stomata, furthering the pull of water to the region of low pressure.
Compare your answer with the correct one above
Which of the following best describes how water is transported from the roots of a tree to the tallest branches?
Which of the following best describes how water is transported from the roots of a tree to the tallest branches?
One of water's most distinctive properties is cohesion—that is, the tendency of water molecules to "stick" to one another. In plants, this cohesion results in columns of water that stretch through the plant's xylem (the vascular tissue responsible for transport of water), from the roots all the way to the leaves. During transpiration, water evaporates from plants' leaves. Because of the cohesion of water, whenever water evaporates, more molecules are "pulled" into the roots to maintain the column of water. This is the transpirational pull-cohesion tension theory.
In contrast, adhesion is the tendency of water molecules to "stick" to other substances, such as the walls of a glass. Adhesion is responsible for the curved meniscus of water in a graduated cylinder. Phloem is responsible for sugar and carbohydrate transport in plants, while xylem transports water.
One of water's most distinctive properties is cohesion—that is, the tendency of water molecules to "stick" to one another. In plants, this cohesion results in columns of water that stretch through the plant's xylem (the vascular tissue responsible for transport of water), from the roots all the way to the leaves. During transpiration, water evaporates from plants' leaves. Because of the cohesion of water, whenever water evaporates, more molecules are "pulled" into the roots to maintain the column of water. This is the transpirational pull-cohesion tension theory.
In contrast, adhesion is the tendency of water molecules to "stick" to other substances, such as the walls of a glass. Adhesion is responsible for the curved meniscus of water in a graduated cylinder. Phloem is responsible for sugar and carbohydrate transport in plants, while xylem transports water.
Compare your answer with the correct one above
How would you expect plants in deserts to differ from those in rainforests?
How would you expect plants in deserts to differ from those in rainforests?
Desert plants would have different water retention and utilization strategies. They would likely use C4 or CAM photosynthesis. The C4 and CAM pathways are specific adaptations to arid conditions. They allow higher water retention, which is needed in the desert but not the rainforest. Since the main difference between these two environments is the abundance of water, even if the other options were true, they are minor differences in comparison to the need to utilize water differently.
Desert plants would have different water retention and utilization strategies. They would likely use C4 or CAM photosynthesis. The C4 and CAM pathways are specific adaptations to arid conditions. They allow higher water retention, which is needed in the desert but not the rainforest. Since the main difference between these two environments is the abundance of water, even if the other options were true, they are minor differences in comparison to the need to utilize water differently.
Compare your answer with the correct one above
Double fertilization in angiosperms results in a zygote and a triploid .
Double fertilization in angiosperms results in a zygote and a triploid .
Double fertilization is the process by which two sperm cells are introduced to the ovule. One sperm (
) fertilizes the egg (
), creating a zygote(
). The other sperm combines with the two polar nuclei (
), forming the endosperm (
) that will nourish the embryo.
Double fertilization is the process by which two sperm cells are introduced to the ovule. One sperm () fertilizes the egg (
), creating a zygote(
). The other sperm combines with the two polar nuclei (
), forming the endosperm (
) that will nourish the embryo.
Compare your answer with the correct one above
Which of the following is true of the sporophyte of a plant?
Which of the following is true of the sporophyte of a plant?
The sporophyte produces spores, which grow into gametophytes. The gametophyte produces both ovules and pollen, which unite to form a zygote. The zygote grows into the next sporophyte. The plant life cycle continues to alternate between these stages. In flowering plants, the gametophyte stage has been greatly reduced compared to the sporophyte stage.
The sporophyte produces spores, which grow into gametophytes. The gametophyte produces both ovules and pollen, which unite to form a zygote. The zygote grows into the next sporophyte. The plant life cycle continues to alternate between these stages. In flowering plants, the gametophyte stage has been greatly reduced compared to the sporophyte stage.
Compare your answer with the correct one above
Pollination is a process in which pollen is transferred between which of the following two structures of an angiosperm?
Pollination is a process in which pollen is transferred between which of the following two structures of an angiosperm?
Pollination is the process in angiosperms through which pollen is transferred from the male anther to the female stigma. Pollination can be either abiotic (i.e. by the wind) or biotic (i.e. by an animal). This process precedes fertilization.
Pollination is the process in angiosperms through which pollen is transferred from the male anther to the female stigma. Pollination can be either abiotic (i.e. by the wind) or biotic (i.e. by an animal). This process precedes fertilization.
Compare your answer with the correct one above
Which of the following can be best described as a method of pollination?
Which of the following can be best described as a method of pollination?
Pollination is defined as the transfer of pollen from the male anther to the female stigma of an angiosperm. There are abiotic and biotic methods of pollinations. Abiotic pollination includes wind and water while in biotic pollination another organism facilitates pollination.
Pollination is defined as the transfer of pollen from the male anther to the female stigma of an angiosperm. There are abiotic and biotic methods of pollinations. Abiotic pollination includes wind and water while in biotic pollination another organism facilitates pollination.
Compare your answer with the correct one above
Diecious plants (such as Gingko biloba) have separate sexes rather than having both male and female parts on a single plant.
Given that ginkgo is diecious, which plants would you expect to produce pollen?
Diecious plants (such as Gingko biloba) have separate sexes rather than having both male and female parts on a single plant.
Given that ginkgo is diecious, which plants would you expect to produce pollen?
Pollen is the male part of the plant, and thus is only produced by male ginkgo plants. Females have ovules with a fleshy, fruit-like outer layer and rely on the males plants for pollination. (Ginkgo is a gymnosperm and thus technically not a flowering/fruit-producing plant.)
Pollen is the male part of the plant, and thus is only produced by male ginkgo plants. Females have ovules with a fleshy, fruit-like outer layer and rely on the males plants for pollination. (Ginkgo is a gymnosperm and thus technically not a flowering/fruit-producing plant.)
Compare your answer with the correct one above
The primary function of xylem is .
The primary function of xylem is .
Xylem transports water from the roots of a plant to the leaves. It does so through a passive process, negative water pressure created by transpiration in the leaves pulls water up from the roots through the xylem, similar to the action water moving up a paper towel when one corner of a paper towel is placed in a pool of water. Xylem cells are dead at maturity so they cannot perform photosynthesis. Sugars are transported by phloem (from the leaves to other areas of the plant). Stomata are structures that facilitate gas exchange.
Xylem transports water from the roots of a plant to the leaves. It does so through a passive process, negative water pressure created by transpiration in the leaves pulls water up from the roots through the xylem, similar to the action water moving up a paper towel when one corner of a paper towel is placed in a pool of water. Xylem cells are dead at maturity so they cannot perform photosynthesis. Sugars are transported by phloem (from the leaves to other areas of the plant). Stomata are structures that facilitate gas exchange.
Compare your answer with the correct one above
Which of the following are true regarding phloem?
I. It transports water from the roots to the leaves.
II. It transports sucrose from the leaves to the roots.
III. It is located lateral to xylem in tree stems.
Which of the following are true regarding phloem?
I. It transports water from the roots to the leaves.
II. It transports sucrose from the leaves to the roots.
III. It is located lateral to xylem in tree stems.
Phloem is located in the bark of trees and transports sugars (such as sucrose) and organic compounds to the rest of the plant from the leaves. The other plant vascular tissue is xylem. Xylem is located outer wood of trees, and transports water from the roots to the leaves of trees.
Phloem is located in the bark of trees and transports sugars (such as sucrose) and organic compounds to the rest of the plant from the leaves. The other plant vascular tissue is xylem. Xylem is located outer wood of trees, and transports water from the roots to the leaves of trees.
Compare your answer with the correct one above
Which of the following is false?
Which of the following is false?
Xylem is dead at maturity, while phloem is living. All other answer choices are true. Xylem is also thicker and more rigid, which allows for greater pressure during water transport. It provides a strong support structure for the plant, enabling taller growth.
Xylem is dead at maturity, while phloem is living. All other answer choices are true. Xylem is also thicker and more rigid, which allows for greater pressure during water transport. It provides a strong support structure for the plant, enabling taller growth.
Compare your answer with the correct one above