DNA and RNA Structure - AP Biology
Card 0 of 784
The most prevalent negative charge on DNA can be found on which of the following molecular components?
The most prevalent negative charge on DNA can be found on which of the following molecular components?
The phosphate backbone of DNA is negatively charged due to the bonds created between the phosphorous atoms and the oxygen atoms. Each phosphate group contains one negatively charged oxygen atom, therefore the entire strand of DNA is negatively charged due to repeated phosphate groups.
The phosphate backbone of DNA is negatively charged due to the bonds created between the phosphorous atoms and the oxygen atoms. Each phosphate group contains one negatively charged oxygen atom, therefore the entire strand of DNA is negatively charged due to repeated phosphate groups.
Compare your answer with the correct one above
Please complete the analogy.
Nitrogen : Nucleic Acids :: Phosphorous : .
Please complete the analogy.
Nitrogen : Nucleic Acids :: Phosphorous : .
Nitrogen is essential to create all the nucleic acids, and phosphorous is essential to create phospholipids (an obvious choice), ATP and ADP (they are the same class of molecule, and the P stands for phosphate), and DNA (for the phosphate-sugar backbone).
Nitrogen is essential to create all the nucleic acids, and phosphorous is essential to create phospholipids (an obvious choice), ATP and ADP (they are the same class of molecule, and the P stands for phosphate), and DNA (for the phosphate-sugar backbone).
Compare your answer with the correct one above
Which of the following is not true of a DNA molecule?
Which of the following is not true of a DNA molecule?
DNA is a polymer composed of nucleotide monomers. Each nucleotide is formed from a deoxyribose sugar, a phosphate, and a nitrogenous base. There are two types of nitrogenous bases: purines and pyrimidines. The purines are adenine and guanine, while the pyrimidines are thymine and cytosine (and uracil). Adenine will always bind thymine and cytosine will always bind guanine. Uracil is only found in RNA, and is absent from DNA.
During DNA replication and synthesis, nucleotides align so that the nitrogenous bases are correctly paired. The bases bind to one other via hydrogen bonding to secure the nucleotide to the template strand. The protein DNA ligase then fuses the sugar-phosphate groups of adjacent nucleotides to create the DNA backbone. These bonds are known as phosphodiester bonds.
The only false statement concerns the identity of bonding between nitrogenous bases. Bases are held together by hydrogen bonds, and the DNA backbone is held together by phosphodiester bonds.
DNA is a polymer composed of nucleotide monomers. Each nucleotide is formed from a deoxyribose sugar, a phosphate, and a nitrogenous base. There are two types of nitrogenous bases: purines and pyrimidines. The purines are adenine and guanine, while the pyrimidines are thymine and cytosine (and uracil). Adenine will always bind thymine and cytosine will always bind guanine. Uracil is only found in RNA, and is absent from DNA.
During DNA replication and synthesis, nucleotides align so that the nitrogenous bases are correctly paired. The bases bind to one other via hydrogen bonding to secure the nucleotide to the template strand. The protein DNA ligase then fuses the sugar-phosphate groups of adjacent nucleotides to create the DNA backbone. These bonds are known as phosphodiester bonds.
The only false statement concerns the identity of bonding between nitrogenous bases. Bases are held together by hydrogen bonds, and the DNA backbone is held together by phosphodiester bonds.
Compare your answer with the correct one above
A bond between the sugar of one nucleotide and the phosphate of an adjacent nucleotide stabilizes the backbone of the DNA.
A bond between the sugar of one nucleotide and the phosphate of an adjacent nucleotide stabilizes the backbone of the DNA.
The bond formed between the sugar of one nucleotide and the phosphate of an adjacent nucleotide is a covalent bond. A covalent bond is the sharing of electrons between atoms. A covalent bond is stronger than a hydrogen bond (hydrogen bonds hold pairs of nucleotides together on opposite strands in DNA). Thus, the covalent bond is crucial to the backbone of the DNA.
The bond formed between the sugar of one nucleotide and the phosphate of an adjacent nucleotide is a covalent bond. A covalent bond is the sharing of electrons between atoms. A covalent bond is stronger than a hydrogen bond (hydrogen bonds hold pairs of nucleotides together on opposite strands in DNA). Thus, the covalent bond is crucial to the backbone of the DNA.
Compare your answer with the correct one above
The most prevalent negative charge on DNA can be found on which of the following molecular components?
The most prevalent negative charge on DNA can be found on which of the following molecular components?
The phosphate backbone of DNA is negatively charged due to the bonds created between the phosphorous atoms and the oxygen atoms. Each phosphate group contains one negatively charged oxygen atom, therefore the entire strand of DNA is negatively charged due to repeated phosphate groups.
The phosphate backbone of DNA is negatively charged due to the bonds created between the phosphorous atoms and the oxygen atoms. Each phosphate group contains one negatively charged oxygen atom, therefore the entire strand of DNA is negatively charged due to repeated phosphate groups.
Compare your answer with the correct one above
Please complete the analogy.
Nitrogen : Nucleic Acids :: Phosphorous : .
Please complete the analogy.
Nitrogen : Nucleic Acids :: Phosphorous : .
Nitrogen is essential to create all the nucleic acids, and phosphorous is essential to create phospholipids (an obvious choice), ATP and ADP (they are the same class of molecule, and the P stands for phosphate), and DNA (for the phosphate-sugar backbone).
Nitrogen is essential to create all the nucleic acids, and phosphorous is essential to create phospholipids (an obvious choice), ATP and ADP (they are the same class of molecule, and the P stands for phosphate), and DNA (for the phosphate-sugar backbone).
Compare your answer with the correct one above
Which of the following is not true of a DNA molecule?
Which of the following is not true of a DNA molecule?
DNA is a polymer composed of nucleotide monomers. Each nucleotide is formed from a deoxyribose sugar, a phosphate, and a nitrogenous base. There are two types of nitrogenous bases: purines and pyrimidines. The purines are adenine and guanine, while the pyrimidines are thymine and cytosine (and uracil). Adenine will always bind thymine and cytosine will always bind guanine. Uracil is only found in RNA, and is absent from DNA.
During DNA replication and synthesis, nucleotides align so that the nitrogenous bases are correctly paired. The bases bind to one other via hydrogen bonding to secure the nucleotide to the template strand. The protein DNA ligase then fuses the sugar-phosphate groups of adjacent nucleotides to create the DNA backbone. These bonds are known as phosphodiester bonds.
The only false statement concerns the identity of bonding between nitrogenous bases. Bases are held together by hydrogen bonds, and the DNA backbone is held together by phosphodiester bonds.
DNA is a polymer composed of nucleotide monomers. Each nucleotide is formed from a deoxyribose sugar, a phosphate, and a nitrogenous base. There are two types of nitrogenous bases: purines and pyrimidines. The purines are adenine and guanine, while the pyrimidines are thymine and cytosine (and uracil). Adenine will always bind thymine and cytosine will always bind guanine. Uracil is only found in RNA, and is absent from DNA.
During DNA replication and synthesis, nucleotides align so that the nitrogenous bases are correctly paired. The bases bind to one other via hydrogen bonding to secure the nucleotide to the template strand. The protein DNA ligase then fuses the sugar-phosphate groups of adjacent nucleotides to create the DNA backbone. These bonds are known as phosphodiester bonds.
The only false statement concerns the identity of bonding between nitrogenous bases. Bases are held together by hydrogen bonds, and the DNA backbone is held together by phosphodiester bonds.
Compare your answer with the correct one above
A bond between the sugar of one nucleotide and the phosphate of an adjacent nucleotide stabilizes the backbone of the DNA.
A bond between the sugar of one nucleotide and the phosphate of an adjacent nucleotide stabilizes the backbone of the DNA.
The bond formed between the sugar of one nucleotide and the phosphate of an adjacent nucleotide is a covalent bond. A covalent bond is the sharing of electrons between atoms. A covalent bond is stronger than a hydrogen bond (hydrogen bonds hold pairs of nucleotides together on opposite strands in DNA). Thus, the covalent bond is crucial to the backbone of the DNA.
The bond formed between the sugar of one nucleotide and the phosphate of an adjacent nucleotide is a covalent bond. A covalent bond is the sharing of electrons between atoms. A covalent bond is stronger than a hydrogen bond (hydrogen bonds hold pairs of nucleotides together on opposite strands in DNA). Thus, the covalent bond is crucial to the backbone of the DNA.
Compare your answer with the correct one above
The most prevalent negative charge on DNA can be found on which of the following molecular components?
The most prevalent negative charge on DNA can be found on which of the following molecular components?
The phosphate backbone of DNA is negatively charged due to the bonds created between the phosphorous atoms and the oxygen atoms. Each phosphate group contains one negatively charged oxygen atom, therefore the entire strand of DNA is negatively charged due to repeated phosphate groups.
The phosphate backbone of DNA is negatively charged due to the bonds created between the phosphorous atoms and the oxygen atoms. Each phosphate group contains one negatively charged oxygen atom, therefore the entire strand of DNA is negatively charged due to repeated phosphate groups.
Compare your answer with the correct one above
Please complete the analogy.
Nitrogen : Nucleic Acids :: Phosphorous : .
Please complete the analogy.
Nitrogen : Nucleic Acids :: Phosphorous : .
Nitrogen is essential to create all the nucleic acids, and phosphorous is essential to create phospholipids (an obvious choice), ATP and ADP (they are the same class of molecule, and the P stands for phosphate), and DNA (for the phosphate-sugar backbone).
Nitrogen is essential to create all the nucleic acids, and phosphorous is essential to create phospholipids (an obvious choice), ATP and ADP (they are the same class of molecule, and the P stands for phosphate), and DNA (for the phosphate-sugar backbone).
Compare your answer with the correct one above
Which of the following is not true of a DNA molecule?
Which of the following is not true of a DNA molecule?
DNA is a polymer composed of nucleotide monomers. Each nucleotide is formed from a deoxyribose sugar, a phosphate, and a nitrogenous base. There are two types of nitrogenous bases: purines and pyrimidines. The purines are adenine and guanine, while the pyrimidines are thymine and cytosine (and uracil). Adenine will always bind thymine and cytosine will always bind guanine. Uracil is only found in RNA, and is absent from DNA.
During DNA replication and synthesis, nucleotides align so that the nitrogenous bases are correctly paired. The bases bind to one other via hydrogen bonding to secure the nucleotide to the template strand. The protein DNA ligase then fuses the sugar-phosphate groups of adjacent nucleotides to create the DNA backbone. These bonds are known as phosphodiester bonds.
The only false statement concerns the identity of bonding between nitrogenous bases. Bases are held together by hydrogen bonds, and the DNA backbone is held together by phosphodiester bonds.
DNA is a polymer composed of nucleotide monomers. Each nucleotide is formed from a deoxyribose sugar, a phosphate, and a nitrogenous base. There are two types of nitrogenous bases: purines and pyrimidines. The purines are adenine and guanine, while the pyrimidines are thymine and cytosine (and uracil). Adenine will always bind thymine and cytosine will always bind guanine. Uracil is only found in RNA, and is absent from DNA.
During DNA replication and synthesis, nucleotides align so that the nitrogenous bases are correctly paired. The bases bind to one other via hydrogen bonding to secure the nucleotide to the template strand. The protein DNA ligase then fuses the sugar-phosphate groups of adjacent nucleotides to create the DNA backbone. These bonds are known as phosphodiester bonds.
The only false statement concerns the identity of bonding between nitrogenous bases. Bases are held together by hydrogen bonds, and the DNA backbone is held together by phosphodiester bonds.
Compare your answer with the correct one above
A bond between the sugar of one nucleotide and the phosphate of an adjacent nucleotide stabilizes the backbone of the DNA.
A bond between the sugar of one nucleotide and the phosphate of an adjacent nucleotide stabilizes the backbone of the DNA.
The bond formed between the sugar of one nucleotide and the phosphate of an adjacent nucleotide is a covalent bond. A covalent bond is the sharing of electrons between atoms. A covalent bond is stronger than a hydrogen bond (hydrogen bonds hold pairs of nucleotides together on opposite strands in DNA). Thus, the covalent bond is crucial to the backbone of the DNA.
The bond formed between the sugar of one nucleotide and the phosphate of an adjacent nucleotide is a covalent bond. A covalent bond is the sharing of electrons between atoms. A covalent bond is stronger than a hydrogen bond (hydrogen bonds hold pairs of nucleotides together on opposite strands in DNA). Thus, the covalent bond is crucial to the backbone of the DNA.
Compare your answer with the correct one above
Which of the following nitrogenous bases are purines?
Which of the following nitrogenous bases are purines?
Purines are adenine and guanine, while pyrimidines are cytosine, thymine, and uracil.
Purines are adenine and guanine, while pyrimidines are cytosine, thymine, and uracil.
Compare your answer with the correct one above
Which of the following nitrogenous bases is used to produce RNA, but not DNA?
Which of the following nitrogenous bases is used to produce RNA, but not DNA?
Uracil is bound to adenine in the production of RNA, while thymine is used in its place in the production of DNA. Adenine, guanine, and cytosine are all used in the production of both RNA and DNA.
Uracil is bound to adenine in the production of RNA, while thymine is used in its place in the production of DNA. Adenine, guanine, and cytosine are all used in the production of both RNA and DNA.
Compare your answer with the correct one above
Which of the following DNA primers has the lowest melting point?
Which of the following DNA primers has the lowest melting point?
Cytosine and guanine form three hydrogen bonds with each other, while adenine and tyrosine only form two hydrogen bonds. This means that strands of DNA with a higher percentage of cytosine and guanine will have higher melting points.
Since we are looking for the sequence with the lowest melting point, we want the lowest percentage of cytosine and guanine, and the highest percentage of adenine and thymine.
Cytosine and guanine form three hydrogen bonds with each other, while adenine and tyrosine only form two hydrogen bonds. This means that strands of DNA with a higher percentage of cytosine and guanine will have higher melting points.
Since we are looking for the sequence with the lowest melting point, we want the lowest percentage of cytosine and guanine, and the highest percentage of adenine and thymine.
Compare your answer with the correct one above
How many total hydrogen bonds would there be between base pairs of a piece of DNA if the sequence of one side was CGTTTGAC?
How many total hydrogen bonds would there be between base pairs of a piece of DNA if the sequence of one side was CGTTTGAC?
Cytosine and guanine form three hydrogen bonds between each other, while tyrosine and adenine form two hydrogen bonds. We simply need to count how many of each base we have and multiple cytosine and guanine by three, and thymine and adenine by two.
CGTTTGAC has 2 cytosine, 2 guanine, 3 thymine, and 1 adenine.

Cytosine and guanine form three hydrogen bonds between each other, while tyrosine and adenine form two hydrogen bonds. We simply need to count how many of each base we have and multiple cytosine and guanine by three, and thymine and adenine by two.
CGTTTGAC has 2 cytosine, 2 guanine, 3 thymine, and 1 adenine.
Compare your answer with the correct one above
What element would you NOT find in either DNA, or RNA?
What element would you NOT find in either DNA, or RNA?
DNA and RNA are made of nucleotides, which contain oxygen, hydrogen, nitrogen, carbon, and phosphorus. The nucleic acid backbone is comprised of sugars, made of carbon, hydrogen, and oxygen, and phosphate groups, made of phosphorus, hydrogen, and oxygen. The backbone binds to bases, which contain a nitrogen element.
Potassium is not found in nucleic acid structure, and is used in other parts of the body like muscles and nerves for signal propagation.
DNA and RNA are made of nucleotides, which contain oxygen, hydrogen, nitrogen, carbon, and phosphorus. The nucleic acid backbone is comprised of sugars, made of carbon, hydrogen, and oxygen, and phosphate groups, made of phosphorus, hydrogen, and oxygen. The backbone binds to bases, which contain a nitrogen element.
Potassium is not found in nucleic acid structure, and is used in other parts of the body like muscles and nerves for signal propagation.
Compare your answer with the correct one above
A section of double-stranded DNA is composed of 35% adenine bases. What is the percentage of cytosine bases in the section of DNA?
A section of double-stranded DNA is composed of 35% adenine bases. What is the percentage of cytosine bases in the section of DNA?
Since we know that 35% of the bases in the section of DNA are adenine, we can conclude that 35% of the bases are thymine. This is because adenine will always pair with thymine, so there will be just as many thymine bases as adenine bases. Together, adenine and thymine compose 70% of the segment.


This means that 30% of the section is composed of guanine-cytosine pairs.

Since these two bases will be equal in quantity, 15% of the DNA section will be cytosine bases.

Since we know that 35% of the bases in the section of DNA are adenine, we can conclude that 35% of the bases are thymine. This is because adenine will always pair with thymine, so there will be just as many thymine bases as adenine bases. Together, adenine and thymine compose 70% of the segment.
This means that 30% of the section is composed of guanine-cytosine pairs.
Since these two bases will be equal in quantity, 15% of the DNA section will be cytosine bases.
Compare your answer with the correct one above
What are the components of a nucleoside?
What are the components of a nucleoside?
This question is mostly about the differentiations between a nucleoside and a nucleotide. A nucleoside is composed of a nitrogenous base and a ribose or deoxyribose sugar. A nitrogenous base, a ribose/deoxyribose sugar, and a phosphate describe a nucleotide. Remember that nucleosides are incomplete nucleotides, and lack a phosphate group.
This question is mostly about the differentiations between a nucleoside and a nucleotide. A nucleoside is composed of a nitrogenous base and a ribose or deoxyribose sugar. A nitrogenous base, a ribose/deoxyribose sugar, and a phosphate describe a nucleotide. Remember that nucleosides are incomplete nucleotides, and lack a phosphate group.
Compare your answer with the correct one above
In a sample of DNA, 30% of the bases are found to be guanine. What percentage of the bases in the sample are thymine?
In a sample of DNA, 30% of the bases are found to be guanine. What percentage of the bases in the sample are thymine?
Guanine will pair with cytosine. From this knowledge, we can assume that there will be an equal number of guanine and cytosine residues in the sample. Each guanine must have a cytosine counterpart.

The total composition of the DNA sample must be accounted for by the sum of all the bases.

Use the known values for guanine and cytosine to find the sum of adenine and thymine.


Like cytosine and guanine, adenine and thymine must be present in equal amounts in order to form proper base pairs. We can reasonably assume that half of the remaining DNA will consist of each residue.

Guanine will pair with cytosine. From this knowledge, we can assume that there will be an equal number of guanine and cytosine residues in the sample. Each guanine must have a cytosine counterpart.
The total composition of the DNA sample must be accounted for by the sum of all the bases.
Use the known values for guanine and cytosine to find the sum of adenine and thymine.
Like cytosine and guanine, adenine and thymine must be present in equal amounts in order to form proper base pairs. We can reasonably assume that half of the remaining DNA will consist of each residue.
Compare your answer with the correct one above