Circulatory and Lymphatic Physiology - Anatomy
Card 0 of 384
Which of the following is not an effect of epinephrine on the circulatory system?
Which of the following is not an effect of epinephrine on the circulatory system?
Epinephrine is a hormone secreted in order to facilitate "fight or flight" reactions by the body. Secretion of epinephrine from the adrenal medulla is initiated by sympathetic stimulation. Epinephrine will increase heart rate, blood pressure, and contraction force; however, the skeletal muscle arterioles will be dilated so that more blood is able to reach the muscles. The sympathetic nervous system is designed to direct blood toward skeletal muscle and the heart, and away from the digestive tract and skin.
Epinephrine is a hormone secreted in order to facilitate "fight or flight" reactions by the body. Secretion of epinephrine from the adrenal medulla is initiated by sympathetic stimulation. Epinephrine will increase heart rate, blood pressure, and contraction force; however, the skeletal muscle arterioles will be dilated so that more blood is able to reach the muscles. The sympathetic nervous system is designed to direct blood toward skeletal muscle and the heart, and away from the digestive tract and skin.
Compare your answer with the correct one above
Which type of hormone is likely to make its way to the nucleus of a cell or type of cell it influences?
Which type of hormone is likely to make its way to the nucleus of a cell or type of cell it influences?
A lipid soluble hormone is likely to make its way to the nucleus because it can easily pass through the hydrophobic membranes of cells. A water soluble protein is likely to attach to the outside of a cell and activate a signaling pathway since it cannot readily pass through the phospholipid bilayer (cell membrane). Hydrophilic hormones are the same as water soluble hormones. Fat soluble hormones must be carried by proteins through the blood.
A lipid soluble hormone is likely to make its way to the nucleus because it can easily pass through the hydrophobic membranes of cells. A water soluble protein is likely to attach to the outside of a cell and activate a signaling pathway since it cannot readily pass through the phospholipid bilayer (cell membrane). Hydrophilic hormones are the same as water soluble hormones. Fat soluble hormones must be carried by proteins through the blood.
Compare your answer with the correct one above
If a hormone is released into the blood stream it is called a(n) and its target is likely a(n) .
If a hormone is released into the blood stream it is called a(n) and its target is likely a(n) .
Hormones secreted into the blood stream have the ability to travel anywhere in the body. Such hormones are endocrine hormones and they can act on organs far from their source. Substances that are secreted outside the body (or within a body cavity) are not hormones, since all hormones are released by endocrine glands into the blood. Rather, these substances are released by exocrine glands (i.e. sweat, digestive enzymes).
Hormones secreted into the blood stream have the ability to travel anywhere in the body. Such hormones are endocrine hormones and they can act on organs far from their source. Substances that are secreted outside the body (or within a body cavity) are not hormones, since all hormones are released by endocrine glands into the blood. Rather, these substances are released by exocrine glands (i.e. sweat, digestive enzymes).
Compare your answer with the correct one above
Which of the following would directly result in increased heart rate?
Which of the following would directly result in increased heart rate?
Norepinephrine and epinephrine (on about an equal basis) on beta-1 receptors in the heart increase heart rate and contractility (force of contraction). These hormones are released from the adrenals in response to sympathetic stimulation.
Norepinephrine and epinephrine (on about an equal basis) on beta-1 receptors in the heart increase heart rate and contractility (force of contraction). These hormones are released from the adrenals in response to sympathetic stimulation.
Compare your answer with the correct one above
Which of the following is responsible for raising the heart rate from 60 to 100 bpm?
Which of the following is responsible for raising the heart rate from 60 to 100 bpm?
Moving the heart rate between 60 and 100 bpm involves only the addition and removal of parasympathetic tone. Remember, parasympathetic: rest and digest; so, to raise the heart rate, parasympathetic tone would have to be withdrawn. Sympathetic tone would not be added until the heart rate exceeds 100 bpm.
Moving the heart rate between 60 and 100 bpm involves only the addition and removal of parasympathetic tone. Remember, parasympathetic: rest and digest; so, to raise the heart rate, parasympathetic tone would have to be withdrawn. Sympathetic tone would not be added until the heart rate exceeds 100 bpm.
Compare your answer with the correct one above
What in one defining characteristic of veins?
What in one defining characteristic of veins?
Veins always carry blood towards the heart. The blood in veins is mostly deoxygenated, however the pulmonary vein, which goes from the lungs to the left atrium, carries newly oxygenated blood back to the heart for it to be pumped to the rest of the body.
In contrast, arteries always travel away from the heart and usually carry oxygenated blood, with the exception of the pulmonary arteries. Arteries and arterioles have a thick layer of smooth muscle that helps to regulate blood pressure. Veins may have some smooth muscle, but are not nearly as significant in helping to regulate blood flow.
Veins always carry blood towards the heart. The blood in veins is mostly deoxygenated, however the pulmonary vein, which goes from the lungs to the left atrium, carries newly oxygenated blood back to the heart for it to be pumped to the rest of the body.
In contrast, arteries always travel away from the heart and usually carry oxygenated blood, with the exception of the pulmonary arteries. Arteries and arterioles have a thick layer of smooth muscle that helps to regulate blood pressure. Veins may have some smooth muscle, but are not nearly as significant in helping to regulate blood flow.
Compare your answer with the correct one above
Which of the following statements about the cardiovascular system is false?
Which of the following statements about the cardiovascular system is false?
A common misconception is that all veins carry deoxygenated blood. In reality, all veins are responsible for bringing blood back to the heart. Generally, blood traveling toward the heart is deoxygentated. The pulmonary veins, however, bring blood that has just received oxygen from the lungs back to the heart. The pulmonary veins are the only veins in the body to carry oxygenated blood.
Similarly, the pulmonary arteries are the only arteries to carry deoxygentated blood away from the heart. All arteries carry blood away from the heart, but most contain oxygenated blood. The vena cavae are large veins that carry deoxygenated blood from the body back to the right atrium. This blood is then transferred to the right ventricle, and the then pulmonary arteries for transport to the lungs. The path of blood from the heart to the lungs and back is known as the pulmonary circuit.
A common misconception is that all veins carry deoxygenated blood. In reality, all veins are responsible for bringing blood back to the heart. Generally, blood traveling toward the heart is deoxygentated. The pulmonary veins, however, bring blood that has just received oxygen from the lungs back to the heart. The pulmonary veins are the only veins in the body to carry oxygenated blood.
Similarly, the pulmonary arteries are the only arteries to carry deoxygentated blood away from the heart. All arteries carry blood away from the heart, but most contain oxygenated blood. The vena cavae are large veins that carry deoxygenated blood from the body back to the right atrium. This blood is then transferred to the right ventricle, and the then pulmonary arteries for transport to the lungs. The path of blood from the heart to the lungs and back is known as the pulmonary circuit.
Compare your answer with the correct one above
Which blood vessel type can be constricted in order to redirect blood flow as needed by the body?
Which blood vessel type can be constricted in order to redirect blood flow as needed by the body?
During times of stress or physical activity, sympathetic nerves can stimulate blood vessels to constrict and dilate in order to redirect blood to the needed areas in the body. For example, sympathetic innervation can direct blood away from the skin and digestive tracts to facilitate muscle action.
Arterioles are typically surrounded by smooth muscle and can be constricted in order to redirect blood flow. Arteries also contain smooth muscle, but are generally too large to have specific, well-controlled effects on blood flow regulation. Venules have very little smooth muscle, and capillaries have none. Remember that the walls of capillaries consist of only a single layer of endothelium.
During times of stress or physical activity, sympathetic nerves can stimulate blood vessels to constrict and dilate in order to redirect blood to the needed areas in the body. For example, sympathetic innervation can direct blood away from the skin and digestive tracts to facilitate muscle action.
Arterioles are typically surrounded by smooth muscle and can be constricted in order to redirect blood flow. Arteries also contain smooth muscle, but are generally too large to have specific, well-controlled effects on blood flow regulation. Venules have very little smooth muscle, and capillaries have none. Remember that the walls of capillaries consist of only a single layer of endothelium.
Compare your answer with the correct one above
Which of the following is a characteristic of arteries?
Which of the following is a characteristic of arteries?
Arteries and veins differ in a few key ways. Arteries are much thicker than veins in order to compensate for the larger pressure exerted on them. Layers of smooth muscle in arteries is used to modulate this high pressure, allowing the vessel to expand or constrict. Veins have much larger lumens than arteries and have valves in order to prevent the backflow of blood. Veins have much lower pressure, but also must force blood to flow against gravity in order to carry it from the periphery back to the heart. This is accomplished by the venous valves.
Arteries and veins differ in a few key ways. Arteries are much thicker than veins in order to compensate for the larger pressure exerted on them. Layers of smooth muscle in arteries is used to modulate this high pressure, allowing the vessel to expand or constrict. Veins have much larger lumens than arteries and have valves in order to prevent the backflow of blood. Veins have much lower pressure, but also must force blood to flow against gravity in order to carry it from the periphery back to the heart. This is accomplished by the venous valves.
Compare your answer with the correct one above
Which of the following vessels carries blood from the periphery towards the heart?
Which of the following vessels carries blood from the periphery towards the heart?
Veins and arteries are the two primary vessels of the circulatory system. Blood is pumped from the heart into arteries, which branch into smaller arterioles. Arterioles terminate in capillary beds, which are specialized to allow for gas exchange. Blood leave the capillaries through venules, which expand into veins that carry the blood back to the heart. Veins always travel toward the heart and arteries always travel away from the heart.
Efferent arterioles are specialized arterioles in the kidneys that transport blood between two separate capillary beds, known as the renal portal system.
Veins and arteries are the two primary vessels of the circulatory system. Blood is pumped from the heart into arteries, which branch into smaller arterioles. Arterioles terminate in capillary beds, which are specialized to allow for gas exchange. Blood leave the capillaries through venules, which expand into veins that carry the blood back to the heart. Veins always travel toward the heart and arteries always travel away from the heart.
Efferent arterioles are specialized arterioles in the kidneys that transport blood between two separate capillary beds, known as the renal portal system.
Compare your answer with the correct one above
In which of the following cardiovascular structures is blood pressure lowest?
In which of the following cardiovascular structures is blood pressure lowest?
Blood flows through the circulatory system as a result of pressure generated by the heart. As blood moves throughout the circulatory system, pressure is lost due to friction generated between blood and blood vessel walls. Therefore, pressure falls continuously as blood moves farther from the heart. Since the body wants to maintain a forward, unidirectional flow of blood, the highest blood pressure is found in the aorta, and the lowest blood pressure is found in the venae cavae - just before emptying into the right atrium.
Blood flows through the circulatory system as a result of pressure generated by the heart. As blood moves throughout the circulatory system, pressure is lost due to friction generated between blood and blood vessel walls. Therefore, pressure falls continuously as blood moves farther from the heart. Since the body wants to maintain a forward, unidirectional flow of blood, the highest blood pressure is found in the aorta, and the lowest blood pressure is found in the venae cavae - just before emptying into the right atrium.
Compare your answer with the correct one above
What is the name for the process of the growth of new blood vessels?
What is the name for the process of the growth of new blood vessels?
Angiogenesis is the development and growth of new blood vessels. The process is regulated by a class of peptides called angiogenic factors. Hematopoiesis is the process by which blood cells are made, in the bone marrow. Atherosclerosis refers to the thickening and the loss of the elasticity of the arteries due to deposition of plaques. Hypertension refers to high blood pressure. Vasoconstriction involves the contraction of smooth muscle surrounding vessels, decreasing blood flow and increasing blood pressure in those vessels.
Angiogenesis is the development and growth of new blood vessels. The process is regulated by a class of peptides called angiogenic factors. Hematopoiesis is the process by which blood cells are made, in the bone marrow. Atherosclerosis refers to the thickening and the loss of the elasticity of the arteries due to deposition of plaques. Hypertension refers to high blood pressure. Vasoconstriction involves the contraction of smooth muscle surrounding vessels, decreasing blood flow and increasing blood pressure in those vessels.
Compare your answer with the correct one above
Which veins and arteries in the body do not contract effectively after an injury because they are held open by dense connective tissue?
Which veins and arteries in the body do not contract effectively after an injury because they are held open by dense connective tissue?
The scalp bleeds profusely not only because the densely packed hair follicles demand a greater blood supply, but also because the superficial fascia (that binds the skin to the connective tissue of the occipitofrontalis muscle) prevents vascular dilation. Because of this, clotting is more difficult.
The scalp bleeds profusely not only because the densely packed hair follicles demand a greater blood supply, but also because the superficial fascia (that binds the skin to the connective tissue of the occipitofrontalis muscle) prevents vascular dilation. Because of this, clotting is more difficult.
Compare your answer with the correct one above
Why would superficial vein blood flow be slower than deep vein blood flow?
Why would superficial vein blood flow be slower than deep vein blood flow?
Blood flow in the veins is much slower because the blood is much farther from the left ventricle. Since the force of this powerful contraction is far "behind" venous flow, blood in veins is more likely to flow backward than in an artery. Because of this, veins have valves to prevent backflow much like the valves in the heart prevent back flow between chambers. The reason the blood flow in deep veins is generally faster than that of superficial veins is because muscle contractions help to move blood along in deep veins. A prime example is the lower legs. Contraction of the gastrocnemius (calf) muscle causes blood to move up through the lesser saphenous vein.
Blood flow in the veins is much slower because the blood is much farther from the left ventricle. Since the force of this powerful contraction is far "behind" venous flow, blood in veins is more likely to flow backward than in an artery. Because of this, veins have valves to prevent backflow much like the valves in the heart prevent back flow between chambers. The reason the blood flow in deep veins is generally faster than that of superficial veins is because muscle contractions help to move blood along in deep veins. A prime example is the lower legs. Contraction of the gastrocnemius (calf) muscle causes blood to move up through the lesser saphenous vein.
Compare your answer with the correct one above
Which of the following is not a layer found in blood vessels?
Which of the following is not a layer found in blood vessels?
The statum corneum is the superficialmost layer of the skin and is not a component of blood vessels.
The statum corneum is the superficialmost layer of the skin and is not a component of blood vessels.
Compare your answer with the correct one above
Which of the following could be described as "strong elastic vessels that carry blood moving away from the heart"?
Which of the following could be described as "strong elastic vessels that carry blood moving away from the heart"?
Arteries are strong elastic vessels that carry blood moving away from the heart. As arteries move away from the heart they become smaller (think of a tree and its branches, the trunk is larger than the branches and as each branch grows out it becomes smaller) and are referred to as arterioles, which connect to capillaries. Capillaries penetrate nearly all tissue; their walls are very thin and allow exchange of materials (oxygen, nutrients) between blood and tissues. Veins are thinner-walled and less muscular. The smallest ones are called venules and connect to capillaries.
Arteries are strong elastic vessels that carry blood moving away from the heart. As arteries move away from the heart they become smaller (think of a tree and its branches, the trunk is larger than the branches and as each branch grows out it becomes smaller) and are referred to as arterioles, which connect to capillaries. Capillaries penetrate nearly all tissue; their walls are very thin and allow exchange of materials (oxygen, nutrients) between blood and tissues. Veins are thinner-walled and less muscular. The smallest ones are called venules and connect to capillaries.
Compare your answer with the correct one above
Which of the following is not an important factor in blood flow through veins?
Which of the following is not an important factor in blood flow through veins?
Blood flow through veins is not very efficient. Slow and weak "pushing" by arteries does not contribute much to blood flow, as the hydrostatic pressure in veins is roughly zero. However, contraction of the diaphragm and skeletal muscles, along with the one way valves in veins (these prevent back flow) are important factors.
Note: Blood clots can occur if blood does not flow properly through veins. This can occur if a person doesn't move enough (for example a long international flight).
Blood flow through veins is not very efficient. Slow and weak "pushing" by arteries does not contribute much to blood flow, as the hydrostatic pressure in veins is roughly zero. However, contraction of the diaphragm and skeletal muscles, along with the one way valves in veins (these prevent back flow) are important factors.
Note: Blood clots can occur if blood does not flow properly through veins. This can occur if a person doesn't move enough (for example a long international flight).
Compare your answer with the correct one above
Venules .
Venules .
Venules are formed from merged capillaries. They progressively merge to form veins. Veins are thin-walled, are under low pressure, and contain the highest proportion of the blood in the cardiovascular system. The largest vein in the body is the vena cava, which returns blood to the heart.
Capillaries have the largest total cross-sectional and surface area. Arterioles are the site of highest resistance in the cardiovascular system. Arteries are thick-walled with extensive elastic tissue and smooth muscle.
Venules are formed from merged capillaries. They progressively merge to form veins. Veins are thin-walled, are under low pressure, and contain the highest proportion of the blood in the cardiovascular system. The largest vein in the body is the vena cava, which returns blood to the heart.
Capillaries have the largest total cross-sectional and surface area. Arterioles are the site of highest resistance in the cardiovascular system. Arteries are thick-walled with extensive elastic tissue and smooth muscle.
Compare your answer with the correct one above
What is the normal path of arterial blood flow to the posterior part of the nasal cavity?
What is the normal path of arterial blood flow to the posterior part of the nasal cavity?
The nasal cavity has a rich blood supply that derives from branches of both the internal and external carotid arteries. The maxillary artery, facial artery, and ophthalmic artery also contribute branches to provide blood supply to the nose. This being said, the posterior nose is supplied by the internal and external carotid arteries, the maxillary branch of the external carotid artery, and the sphenopalatine artery, which branches off the maxillary artery.
The nasal cavity has a rich blood supply that derives from branches of both the internal and external carotid arteries. The maxillary artery, facial artery, and ophthalmic artery also contribute branches to provide blood supply to the nose. This being said, the posterior nose is supplied by the internal and external carotid arteries, the maxillary branch of the external carotid artery, and the sphenopalatine artery, which branches off the maxillary artery.
Compare your answer with the correct one above
Which part of circulation has the highest compliance?
Which part of circulation has the highest compliance?
Veins are the most compliant entity within the circulatory system. The compliance of a systemic vein is 24 times that of its corresponding artery. Veins serve as the major blood reservoir within the human body, and are 8 times as distensible as arteries.
Veins are the most compliant entity within the circulatory system. The compliance of a systemic vein is 24 times that of its corresponding artery. Veins serve as the major blood reservoir within the human body, and are 8 times as distensible as arteries.
Compare your answer with the correct one above