How to multiply binomials with the distributive property - ACT Math
Card 0 of 72
Which of the following expressions is equivalent to: 6x (m2 +yx2 _–_3)?
Which of the following expressions is equivalent to: 6x (m2 +yx2 _–_3)?
6x (m2 +yx2 _–_3)= 6x∙m2 + 6xyx2 – 6x∙3= 6xm2 + 6yx3 -18x (Use Distributive Property)
6x (m2 +yx2 _–_3)= 6x∙m2 + 6xyx2 – 6x∙3= 6xm2 + 6yx3 -18x (Use Distributive Property)
Compare your answer with the correct one above
Which of the following expressions is equivalent to: 
?
Which of the following expressions is equivalent to: ?
Use the distributive property to multiply 
 by all of the terms in 
:


Use the distributive property to multiply  by all of the terms in 
:
Compare your answer with the correct one above
If 
 and 
 are constants and 
 is equivalent to 
, what is the value of 
?
If  and 
 are constants and 
 is equivalent to 
, what is the value of 
?
The question gives us a quadratic expression and its factored form. From this, we know

At this point, solve for t.

Now, we can plug in 
 to get
.
Now, use FOIL to get s.



The question gives us a quadratic expression and its factored form. From this, we know
At this point, solve for t.
Now, we can plug in  to get
.
Now, use FOIL to get s.
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which of the following expressions is equivalent to: 6x (m2 +yx2 _–_3)?
Which of the following expressions is equivalent to: 6x (m2 +yx2 _–_3)?
6x (m2 +yx2 _–_3)= 6x∙m2 + 6xyx2 – 6x∙3= 6xm2 + 6yx3 -18x (Use Distributive Property)
6x (m2 +yx2 _–_3)= 6x∙m2 + 6xyx2 – 6x∙3= 6xm2 + 6yx3 -18x (Use Distributive Property)
Compare your answer with the correct one above
Which of the following expressions is equivalent to: 
?
Which of the following expressions is equivalent to: ?
Use the distributive property to multiply 
 by all of the terms in 
:


Use the distributive property to multiply  by all of the terms in 
:
Compare your answer with the correct one above
If 
 and 
 are constants and 
 is equivalent to 
, what is the value of 
?
If  and 
 are constants and 
 is equivalent to 
, what is the value of 
?
The question gives us a quadratic expression and its factored form. From this, we know

At this point, solve for t.

Now, we can plug in 
 to get
.
Now, use FOIL to get s.



The question gives us a quadratic expression and its factored form. From this, we know
At this point, solve for t.
Now, we can plug in  to get
.
Now, use FOIL to get s.
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above
Which of the following expressions is equivalent to: 6x (m2 +yx2 _–_3)?
Which of the following expressions is equivalent to: 6x (m2 +yx2 _–_3)?
6x (m2 +yx2 _–_3)= 6x∙m2 + 6xyx2 – 6x∙3= 6xm2 + 6yx3 -18x (Use Distributive Property)
6x (m2 +yx2 _–_3)= 6x∙m2 + 6xyx2 – 6x∙3= 6xm2 + 6yx3 -18x (Use Distributive Property)
Compare your answer with the correct one above
Which of the following expressions is equivalent to: 
?
Which of the following expressions is equivalent to: ?
Use the distributive property to multiply 
 by all of the terms in 
:


Use the distributive property to multiply  by all of the terms in 
:
Compare your answer with the correct one above
If 
 and 
 are constants and 
 is equivalent to 
, what is the value of 
?
If  and 
 are constants and 
 is equivalent to 
, what is the value of 
?
The question gives us a quadratic expression and its factored form. From this, we know

At this point, solve for t.

Now, we can plug in 
 to get
.
Now, use FOIL to get s.



The question gives us a quadratic expression and its factored form. From this, we know
At this point, solve for t.
Now, we can plug in  to get
.
Now, use FOIL to get s.
Compare your answer with the correct one above
Which expression is equal to 
?
Which expression is equal to ?
In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:

In this problem, we are to multiply the two binomials using the FOIL method. This method stands for the order in which you multiply the variables. F stands for the first term of each binomial. O stands for the outside terms, meaning the first term of the first binomial and the last term of the second. I stands for the inside terms, meaning the second term of the first binomial and the first term of the second. L stands for the last term of each binomial. Once you do this, you simply add each part together to recieve your polynomial answer. Here is how our problem is solved:
Compare your answer with the correct one above