Card 0 of 1305
What is the slope of the line:
First put the question in slope intercept form (y = mx + b):
–(1/6)y = –(14/3)x – 7 =>
y = 6(14/3)x – 7
y = 28x – 7.
The slope is 28.
Compare your answer with the correct one above
If 2x – 4y = 10, what is the slope of the line?
First put the equation into slope-intercept form, solving for y: 2x – 4y = 10 → –4y = –2x + 10 → y = 1/2*x – 5/2. So the slope is 1/2.
Compare your answer with the correct one above
What is the slope of the line with equation 4_x_ – 16_y_ = 24?
The equation of a line is:
y = mx + b, where m is the slope
4_x_ – 16_y_ = 24
–16_y_ = –4_x_ + 24
y = (–4_x_)/(–16) + 24/(–16)
y = (1/4)x – 1.5
Slope = 1/4
Compare your answer with the correct one above
What is the midpoint of MN between the points M(2, 6) and N (8, 4)?
The midpoint formula is equal to . Add the x-values together and divide them by 2, and do the same for the y-values.
x: (2 + 8) / 2 = 10 / 2 = 5
y: (6 + 4) / 2 = 10 / 2 = 5
The midpoint of MN is (5,5).
Compare your answer with the correct one above
Which of the following is the equation of a line parallel to the line .
Parallel lines have equivalent slopes, so the correct answer is .
Compare your answer with the correct one above
What line is perpendicular to x + 3_y_ = 6 and travels through point (1,5)?
Convert the equation to slope intercept form to get y = –1/3_x_ + 2. The old slope is –1/3 and the new slope is 3. Perpendicular slopes must be opposite reciprocals of each other: _m_1 * _m_2 = –1
With the new slope, use the slope intercept form and the point to calculate the intercept: y = mx + b or 5 = 3(1) + b, so b = 2
So y = 3_x_ + 2
Compare your answer with the correct one above
What line is perpendicular to 2x + y = 3 at (1,1)?
Find the slope of the given line. The perpendicular slope will be the opposite reciprocal of the original slope. Use the slope-intercept form (y = mx + b) and substitute in the given point and the new slope to find the intercept, b. Convert back to standard form of an equation: ax + by = c.
Compare your answer with the correct one above
What is the slope of the line perpendicular to the line given by the equation
6x – 9y +14 = 0
First rearrange the equation so that it is in slope-intercept form, resulting in y=2/3 x + 14/9. The slope of this line is 2/3, so the slope of the line perpendicular will have the opposite reciprocal as a slope, which is -3/2.
Compare your answer with the correct one above
What is the slope of the line perpendicular to the line represented by the equation y = -2x+3?
Perpendicular lines have slopes that are the opposite of the reciprocal of each other. In this case, the slope of the first line is -2. The reciprocal of -2 is -1/2, so the opposite of the reciprocal is therefore 1/2.
Compare your answer with the correct one above
Circle A is centered about the origin and has a radius of 5. What is the equation of the line that is tangent to Circle A at the point (–3,4)?
The line must be perpendicular to the radius at the point (–3,4). The slope of the radius is given by
The radius has endpoints (–3,4) and the center of the circle (0,0), so its slope is –4/3.
The slope of the tangent line must be perpendicular to the slope of the radius, so the slope of the line is ¾.
The equation of the line is y – 4 = (3/4)(x – (–3))
Rearranging gives us: 3_x_ – 4_y_ = -25
Compare your answer with the correct one above
Give the equation, in slope-intercept form, of the line tangent to the circle of the equation
at the point .
Rewrite the equation of the circle in standard form to find its center:
Complete the square:
The center is .
A tangent to this circle at a given point is perpendicular to the radius to that point. The radius with endpoints and
will have slope
,
so the tangent line has the opposite of the reciprocal of this, or , as its slope.
The tangent line therefore has equation
Compare your answer with the correct one above
Give the equation, in slope-intercept form, of the line tangent to the circle of the equation
at the point .
The graph of the equation is a circle with center
.
A tangent to this circle at a given point is perpendicular to the radius to that point. The radius with endpoints and
will have slope
,
so the tangent line has the opposite of the reciprocal of this, or , as its slope.
The tangent line therefore has equation
Compare your answer with the correct one above
What is the equation of a tangent line to
at point ?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find our slope by plugging our into the derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point we plug the point into
.
Therefore our equation becomes,
Once we rearrange, the equation is
Compare your answer with the correct one above
What is the equation of a tangent line to
at point
?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find our slope by plugging in our into the derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point , we plug the point into
.
Therefore our equation is
Once we rearrange, the equation is
Compare your answer with the correct one above
Find the tangent line equation to
at point
?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find our slope at our by plugging in the value into our derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point
We plug into
.
Therefore our equation is
Once we rearrange, the equation is
Compare your answer with the correct one above
What is the tangent line equation of
at point
?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find the slope by plugging our into the derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point we plug it into
.
Therefore our equation is
Once we rearrange, the equation is
Compare your answer with the correct one above
Find the equation of a tangent line to
for the point
?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find the slope by plugging in our into the derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point we plug our point into
.
Therefore our equation is
Once we rearrange, the equation is
Compare your answer with the correct one above
What is the equation of a tangent line to
at the point
?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find our slope by plugging in our into the derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point we plug the point into
.
Therefore our equation is
Once we rearrange, the equation is
Compare your answer with the correct one above
Find the equation of a tangent line to
at the point
?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find the slope by plugging in our into the derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point we plug our point into
.
Therefore our equation is
Once we rearrange, the equation is
Compare your answer with the correct one above
What is the equation of a tangent line to
at the point
?
To find an equation tangent to
we need to find the first derviative of this equation with respect to to get the slope
of the tangent line.
So,
due to power rule .
First we need to find our slope by plugging our into the derivative equation and solving.
Thus, the slope is
.
To find the equation of a tangent line of a given point we plug our point into
.
Therefore our equation is
Once we rearrange, the equation is
Compare your answer with the correct one above